Advertisement

Nystatin–polyethylene oxide conjugates with enhanced solubility in water

  • Mariana Spulber
  • Adrian Fifere
  • Durdureanu-Angleuta Anamaria
  • Nicusor Fifere
Original Article
  • 182 Downloads

Abstract

Due to its broad-action spectra nystatin has been used for years for mucocutaneous candidosis, still its clinical use has been limited due to the lack of absorption by the oral route, and systemic side-effects and toxicity. In order to overcome low water solubility and high toxicity new conjugates nystatin–polyethylene oxide were synthesized and characterized from physico-chemical, as also from the controlled release pattern and antifungal efficacy point of view. To the knowledge of the authors this structure has not been reported previously in the literature and indicate an interesting release pattern as well as increased biological activity.

Keywords

Nystatin Sustained release PEO 

Notes

Acknowledgments

This research was financially supported by European Social Fund –„Cristofor I. Simionescu” Postdoctoral Fellowship Programme (IDPOSDRU/89/1.5/S/55216), Human Resources Development 2007–2013. The authors will like to express their gratitude to Dr. Valeria Harabagiu, Dr. Xenia Patras and Dr. Aurica Farcas for their advice and guidance in understanding the complexity of the described phenomena.

References:

  1. 1.
    Bolard, J.: How do the polyene macrolide antibiotics affect the cellular membrane properties? Biochim. Biophys. Acta. Rev. Biomembr. 864, 257–304 (1986)Google Scholar
  2. 2.
    Huber, W.G.: Antifungal and antiviral agents. In: Jones, L.M., Booth, N.H., McDonald, L.E. (eds.) Veterinary Pharmacology and Therapeutics, p. 977. Iowa State University Press, Ames (1977)Google Scholar
  3. 3.
    Wallace, T.L., Lopez-Berenstein, G.: Nystatin and liposomal nystatin. In: Yu, V.L., Merigan, T.C., Barriere, S., White, N.J. (eds.) Antimicrobial Therapy and Vaccines, pp. 1185–1191. Williams and Wilkins, Baltimore (1998)Google Scholar
  4. 4.
    Wallace, T.L., Paetznick, V., Cossum, P.A., Lopez-Berestein, G., Rex, J.H., Anaissie, E.: Activity of liposomal nystatin against disseminated Aspergillus fumigatus in neutropenic mice. Antimicrob. Agents Chemother. 41, 2238–2243 (1997)Google Scholar
  5. 5.
    Boutati, E., Maltezou, H.C., Lopez-Berenstein, G. V., Kinsky, S.C. Polyene antibiotics. In: Gottlieb, D., Shaw, P.D. (eds.) Antibiotics, vol. 1, pp. 122–141. Springer-Verlag, New York (1967)Google Scholar
  6. 6.
    Wang, M.M., Sugar, I.P., Parkson, L.-G.C.: Role of the sterol superlattice in the partitioning of the antifungal drug nystatin into lipid membranes. Biochemistry 37, 11797–11805 (1998)CrossRefGoogle Scholar
  7. 7.
    Van Doorne, H.: Stability and in vitro activity of nystatin and its gamma-cyclodextrin complex against Candida albicans. Int. J. Pharm. 73, 43–49 (1991)CrossRefGoogle Scholar
  8. 8.
    Seymour, A.R., Meechan, J., Yates, M.S.: Pharmacology and Dental Therapeutics, 3rd edn, pp. 171–173. Oxford University Press, New York (2004)Google Scholar
  9. 9.
    Feng, J., Su, W., Wang, H.-F., Zhang, X.-Z., Zhuo, R.-X.: Facile fabrication of diblock methoxy poly(ethylene glycol)-poly(tetramethylene carbonate) and its self-assembled micelles as drug carriers. ACS Appl. Mater. Interfaces 1(12), 2729–2737 (2009)CrossRefGoogle Scholar
  10. 10.
    Carillo-Munoz, A.J., Quindos, G., Tur, C., Ruesga, M.T., Miranda, Y., del Valle, O., Cossum, P.A., Wallace, T.L.: In vitro antifungal activity of liposomal nystatin in comparison with nystatin, amphotericin B cholesteryl sulphate, liposomal amphotericin B, amphotericin B lipid complex, amphotericin B desoxycholate, fluconazole and itraconazole. J. Antimicrob. Chemother. 44, 397–401 (1999)CrossRefGoogle Scholar
  11. 11.
    Borgos, S.E.F., Tsan, P., Sletta, H., Ellingsen, T.E., Lancelin, J.-M., Zotchev, S.B.: Probing the structure-function relationship of polyene macrolides: engineered biosynthesis of soluble nystatin analogues. J. Med. Chem. 49, 2431–2439 (2006)CrossRefGoogle Scholar
  12. 12.
    Storescu, V.: Bazele farmacologice ale practicii medicale. Ed. Medicala 1, 1240–1245 (1997)Google Scholar
  13. 13.
    Gavrilin, M.V., Podluzhnaya, A.V.: Poly(ethylene oxide)-based nystatin ointment. Pharm. Chem. J. 36(3), 159–162 (2002)CrossRefGoogle Scholar
  14. 14.
    Bilkova, E., Imramovsky, A., Buchta, V., Sedlak, M.: Targeted antifungal delivery system: β-glucosidase sensitive nystatin-star poly(ethylene glycol) conjugates. Int. J. Pharm. 386, 1–5 (2010)CrossRefGoogle Scholar
  15. 15.
    Croy, S.R., Kwon, G.S.: The effects of pluronic block copolymers on the aggregation state of nystatin. J. Control Release 95, 161–171 (2004)CrossRefGoogle Scholar
  16. 16.
    Higuchi, T., Connors, K.A.: Phase-solubility techniques. Adv. Anal. Chem. Instrum. 4, 212–217 (1965)Google Scholar
  17. 17.
    Sletta, H., Borgos, S.E., Bruheim, P., Sekurova, O.N., Grasdalen, H., Aune, R., Ellingsen, T.E., Zotchev, S.B.: Nystatin biosynthesis and transport: nysH and Nys G genes encoding a putative ABC transporter system in Streptomyces noursei ATCC 1145 are required for efficient conversion of 10-deoxynystatin to nystatin. Antimicrob. Agents Chemother. 49, 4576–4583 (2005)CrossRefGoogle Scholar
  18. 18.
    Lancelin, J.-M., Beau, J.-M.: Complete stereostructure of nystatin A1: a proton NMR study. Tetrahedron Lett. 30, 4521–4524 (1989)CrossRefGoogle Scholar
  19. 19.
    Llabot, J.M., Manzo, R.H., Allemandi, D.A.: Double-layered mucoadhesive tablets containing nystatin. AAPS PharmSciTech. 3(3), E22 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Mariana Spulber
    • 1
  • Adrian Fifere
    • 1
  • Durdureanu-Angleuta Anamaria
    • 1
    • 2
  • Nicusor Fifere
    • 1
  1. 1.“Petru Poni” Institute of Macromolecular Chemistry IasiRomania
  2. 2.Technical University “Gh. Asachi”IasiRomania

Personalised recommendations