Skip to main content

Advertisement

Log in

Application of GA-MLR method in QSPR modeling of stability constants of diverse 15-crown-5 complexes with sodium cation

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

A genetic algorithm based multiple linear regressions (GA-MLR) method was applied for quantitative structure property relationship (QSPR) modeling of stability constants for 65 complexes of 1,4,7,10,13-pentaoxacyclopentadecane ethers (15C5) with sodium cation (Na+). The best subset of molecular descriptors was selected with genetic algorithm subset selection procedure, to a variety of theoretical molecular descriptors, calculated by the Dragon software. The MLR model was developed with particular attention to external validation and applicability domain (AD). The validation was performed on the internal and external validation sets. The QSPR model presented in this study showed most accurate predictions with the leave one out cross validated variance (\( {\text{Q}}_{\text{loo - cv}}^{2} \) = 0.88) and the external-validated variance (\( Q_{\rm ext}^{2} \) = 0.82). The AD of the models was analysed by the leverage approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Saleh, M.I., Kusrini, E., Fun, H.K., Yamin, B.M.: Structural and selectivity of 18-crown-6 ligand in lanthanide–picrate complexes. J. Organomet. Chem. 693, 2561–2571 (2008)

    Article  CAS  Google Scholar 

  2. Moriuchi-Kawakami, T., Aoki, R., Morita, K., Tsujioka, H., Fujimori, K., Shibutani, Y., Shono, T.: Conformational analysis of 12-crown-3 and sodium ion selectivity of electrodes based on bis(12-crown-3) derivatives with malonate spacers. Anal. Chim. Acta 480, 291–298 (2003)

    Article  CAS  Google Scholar 

  3. Takeda, Y., Yasui, A., Katsuta, S.: Extraction of sodium and potassium perchlorates with dibenzo-18-crown-6 into various organic solvents. Quantitative elucidation of anion effects on the extraction-ability and -selectivity. J. Incl. Phenom. Macrocycl. Chem. 50, 157–164 (2004)

    Article  CAS  Google Scholar 

  4. Kim, H.S., Chi, K.W.: Monte Carlo simulation study for QSPR of solvent effect on the selectivity of 18-crown-6 between Gd3+ and Yb3+ ions. J. Mol. Struct. Theochem. 722, 1–7 (2005)

    Article  CAS  Google Scholar 

  5. Kim, H.S.: QSPR analysis of solvent effect on selectivity of 18-crown-6 between Nd3+ and Eu3+ ions: a Monte Carlo simulation study. Bull. Korean Chem. Soc. 27, 2011–2018 (2006)

    Article  CAS  Google Scholar 

  6. Kim, H.S.: QSPR analysis of solvent effect on selectivity of 18-crown-6 between Nd3+ and Eu3+ ions: a Monte Carlo simulation study. Abstr. Pap. Am. Chem. Soc. 230, U1327–U1328 (2005)

    Google Scholar 

  7. Yazdi, A.S., Mofazzeli, F., Es’haghi, Z.: Determination of 3-nitroaniline in water samples by directly suspended droplet three-phase liquid-phase microextraction using 18-crown-6 ether and high-performance liquid chromatography. J. Chromatogr. A 1216, 5086–5091 (2009)

    Article  CAS  Google Scholar 

  8. Parat, C., Betelu, S., Authier, L., Potin-Gautier, M.: Determination of labile trace metals with screen-printed electrode modified by a crown-ether based membrane. Anal. Chim. Acta 573, 14–19 (2006)

    Article  Google Scholar 

  9. Raut, D.R., Mohapatra, P.K., Ansari, S.A., Sarkar, A., Manchanda, V.K.: Selective transport of radio-cesium by supported liquid membranes containing calix[4]crown-6 ligands as the mobile carrier. Desalination 232, 262–271 (2008)

    Article  CAS  Google Scholar 

  10. Heng, L.Y., Hall, E.A.H.: Assessing a photocured self-plasticised acrylic membrane recipe for Na+ and K+ ion selective electrodes. Anal. Chim. Acta 443, 25–40 (2001)

    Article  CAS  Google Scholar 

  11. Han, W.S., Lee, Y.H., Jung, K.J., Ly, S.Y., Hong, T.K., Kim, M.H.: Potassium ion-selective polyaniline solid-contact electrodes based on 4′,4″(5″)-di-tert-butyldibenzo-18-crown-6-ether ionophore. J. Anal. Chem. 63, 987–993 (2008)

    Article  CAS  Google Scholar 

  12. Zeng, X.S., Han, X.X., Chen, L.X., Li, Q.S., Xu, F.B., He, X.W., Zhang, Z.Z.: The first synthesis of a calix[4](diseleno)crown ether as a sensor for ion-selective electrodes. Tetrahedron Lett. 43, 131–134 (2002)

    Article  CAS  Google Scholar 

  13. Pozzi, G., Quici, S., Fish, R.H.: Perfluorocarbon soluble crown ethers as phase transfer catalysts. Adv. Synth. Catal. 350, 2425–2436 (2008)

    Article  CAS  Google Scholar 

  14. Xia, L.X., Jia, Y., Tong, S.R., Wang, J., Han, G.X.: Interfacial behavior of phase transfer catalysis of the reaction between potassium thiocyanate and p-nitrobenzyl bromide with crown ethers as catalysts. Kinet. Catal. 51, 69–74 (2010)

    Article  CAS  Google Scholar 

  15. Jaszay, Z., Pham, T.S., Nemeth, G., Bako, P., Petnehazy, I., Toke, L.: Asymmetric synthesis of substituted alpha-amino phosphonates with chiral crown ethers as catalysts. Synlett. 9, 1429–1432 (2009)

    Google Scholar 

  16. Seki, A., Motoya, K., Watanabe, S., Kubo, I.: Novel sensors for potassium, calcium and magnesium ions based on a silicon transducer as a light-addressable potentiometric sensor. Anal. Chim. Acta 382, 131–136 (1999)

    Article  CAS  Google Scholar 

  17. Katritzky, A.R., Chen, K., Maran, U., Carlson, D.A.: QSPR correlation and predictions of GC retention indexes for methyl-branched hydrocarbons produced by insects. Anal. Chem. 72, 101–109 (2000)

    Article  CAS  Google Scholar 

  18. Ghasemi, J.B., Ahmadi, S., Brown, S.D.: A quantitative structure-retention relationship study for prediction of chromatographic relative retention time of chlorinated monoterpenes. Environ. Chem. Lett. (2009) (in press)

  19. Fang, L., Huang, J., Yu, G., Li, X.: Quantitative structure-property relationship studies for direct photolysis rate constants and quantum yields of polybrominated diphenyl ethers in hexane and methanol. Ecotoxicol. Environ. Saf. 72, 1587–1593 (2009)

    Article  CAS  Google Scholar 

  20. Ghasemi, J., Ahmadi, S.: Combination of genetic algorithm and partial least squares for cloud point prediction of nonionic surfactants from molecular structures. Ann. Chim. Rome 97, 69–83 (2007)

    Article  CAS  Google Scholar 

  21. Tetko, I.V., Solov’ev, V.P., Antonov, A.V., Yao, X., Doucet, J.P., Fan, B., Hoonakker, F., Fourches, D., Jost, P., Lachiche, N., Varnek, A.: Benchmarking of linear and nonlinear approaches for quantitative structure–property relationship studies of metal complexation with ionophores. J. Chem. Inf. Model. 46, 808–819 (2006)

    Article  CAS  Google Scholar 

  22. Yao, X.J., Fan, B.T., Doucet, J.P., Panaye, A., Liu, M.C., Zhang, R.S., Zhang, X.Y., Hu, Z.D.: Quantitative structure property relationship models for the prediction of liquid heat capacity. QSAR Comb. Sci. 22, 29–48 (2003)

    Article  CAS  Google Scholar 

  23. Gakh, A.A., Sumpter, B.G., Noid, D.W., Sachleben, R.A., Moyer, B.A.: Prediction of complexation properties of crown ethers using computational neural networks. J. Incl. Phenom. Mol. Recognit. Chem. 27, 201–213 (1997)

    Article  CAS  Google Scholar 

  24. Shi, Z.G., Mccullough, E.A.: A computer simulation statistical procedure for predicting complexation equilibrium constants. J. Incl. Phenom. Mol. Recognit. Chem. 18, 9–26 (1994)

    Article  CAS  Google Scholar 

  25. Varnek, A., Wipff, G., Solov’ev, V.P., Solotnov, A.F.: Assessment of the macrocyclic effect for the complexation of crown-ethers with alkali cations using the substructural molecular fragments method. J. Chem. Inf. Comput. Sci. 42, 812–829 (2002)

    CAS  Google Scholar 

  26. Ghasemi, J., Saaidpour, S.: QSPR modeling of stability constants of diverse 15-crown-5 ethers complexes using best multiple linear regression. J. Incl. Phenom. Macrocycl. Chem. 60, 339–351 (2008)

    Article  CAS  Google Scholar 

  27. Leardi, R., Boggia, R., Terrile, M.: Genetic algorithms as a strategy for feature-selection. J. Chemom. 6, 267–281 (1992)

    Article  CAS  Google Scholar 

  28. Todeschini, R., Consonni, V., Mauri, A., Pavan, M.: Detecting “bad” regression models: multicriteria fitness functions in regression analysis. Anal. Chim. Acta 515, 199–208 (2004)

    Article  CAS  Google Scholar 

  29. Izatt, R.M., Pawlak, K., Bradshaw, J.S., Bruening, R.L.: Thermodynamic and kinetic data for macrocycle interaction with cations and anions. Chem. Rev. 91, 1721–2085 (1991)

    Article  CAS  Google Scholar 

  30. Hyperchem, v.7.5. Hypercube Inc. http://www.hyper.com (2002)

  31. Dewar, M.J.S., Zoebisch, E.G., Healy, E.F., Stewart, J.J.P.: AM1—a new general purpose quantum mechanical molecular model. J. Am. Chem. Soc. 107, 3902–3909 (1985)

    Article  CAS  Google Scholar 

  32. Stewart, J.J.P.: Mopac 6.0, Quantum chemical program exchange. (1990)

  33. Talete, S.: Dragon for windows (software for molecular descriptor calculations), version 5.4. http://www.talete.mi.it (2006)

  34. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading, MA (1989)

    Google Scholar 

  35. Goodarzi, M., Freitas, M.P., Wu, C.H., Duchowicz, P.R.: pKa modeling and prediction of a series of pH indicators through genetic algorithm-least square support vector regression. Chemom. Intell. Lab. 101, 102–109 (2010)

    Article  CAS  Google Scholar 

  36. Cho, S.J., Hermsmeier, M.A.: Genetic algorithm guided selection: variable selection and subset selection. J. Chem. Inf. Comput. Sci. 42, 927–936 (2002)

    CAS  Google Scholar 

  37. Gharagheizi, F., Alamdari, R.F.: Prediction of flash point temperature of pure components using a Quantitative Structure–Property Relationship model. QSAR Comb. Sci. 27, 679–683 (2008)

    Article  CAS  Google Scholar 

  38. Rogers, D., Hopfinger, A.J.: Application of genetic function approximation to quantitative structure–activity relationships and quantitative structure–property relationships. J. Chem. Inf. Comput. Sci. 34, 854–866 (1994)

    CAS  Google Scholar 

  39. Hemmateenejad, B., Miri, R., Akhond, M., Shamsipur, M.: QSAR study of the calcium channel antagonist activity of some recently synthesized dihydropyridine derivatives. An application of genetic algorithm for variable selection in MLR and PLS methods. Chemom. Intell. Lab. 64, 91–99 (2002)

    Article  CAS  Google Scholar 

  40. Depczynski, U., Frost, V.J., Molt, K.: Genetic algorithms applied to the selection of factors in principal component regression. Anal. Chim. Acta 420, 217–227 (2000)

    Article  CAS  Google Scholar 

  41. Jouanrimbaud, D., Massart, D.L., Leardi, R., Denoord, O.E.: Genetic algorithms as a tool for wavelength selection in multivariate calibration. Anal. Chem. 67, 4295–4301 (1995)

    Article  CAS  Google Scholar 

  42. Atkinson, A.C.: Plots, Transformations and Regression. Clarendon Press, Oxford (1985)

    Google Scholar 

  43. Gramatica, P.: Principles of QSAR models validation: internal and external. QSAR Comb. Sci. 26, 694–701 (2007)

    Article  CAS  Google Scholar 

  44. Guha, R., Serra, J.R., Jurs, P.C.: Generation of QSAR sets with a self-organizing map. J. Mol. Graph. Model. 23, 1–14 (2004)

    Article  CAS  Google Scholar 

  45. Jaiswal, M., Khadikar, P.V., Scozzafava, A., Supuran, C.T.: Carbonic anhydrase inhibitors: the first QSAR study on inhibition of tumor-associated isoenzyme IX with aromatic and heterocyclic sulfonamides. Bioorg. Med. Chem. Lett. 14, 3283–3290 (2004)

    Article  CAS  Google Scholar 

  46. Shapiro, S., Guggenheim, B.: Inhibition of oral bacteria by phenolic compounds—Part 1. QSAR analysis using molecular connectivity. Quant. Struct. Act. Relatsh. 17, 327–337 (1998)

    Article  CAS  Google Scholar 

  47. Geary, R.C.: The contiguity ratio and statistical mapping. Incorp. Statist. 5, 115–145 (1954)

    Google Scholar 

  48. Consonni, V., Todeschini, R., Pavan, M.: Structure/response correlations and similarity/diversity analysis by GETAWAY descriptors. 1. Theory of the novel 3D molecular descriptors. J. Chem. Inf. Comput. Sci. 42, 682–692 (2002)

    CAS  Google Scholar 

  49. Consonni, V., Todeschini, R., Pavan, M., Gramatica, P.: Structure/response correlations and similarity/diversity analysis by GETAWAY descriptors. 2. Application of the novel 3D molecular descriptors to QSAR/QSPR studies. J. Chem. Inf. Comput. Sci. 42, 693–705 (2002)

    CAS  Google Scholar 

  50. Deswal, S., Roy, N.: Quantitative structure activity relationship studies of aryl heterocycle-based thrombin inhibitors. Eur. J. Med. Chem. 41, 1339–1346 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by Islamic Azad University, Kermanshah Branch, Kermanshah, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahin Ahmadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmadi, S. Application of GA-MLR method in QSPR modeling of stability constants of diverse 15-crown-5 complexes with sodium cation. J Incl Phenom Macrocycl Chem 74, 57–66 (2012). https://doi.org/10.1007/s10847-010-9881-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-010-9881-6

Keywords

Navigation