Advertisement

Voltammetric studies of the interaction of 6-mercaptopurine with cucurbit[7]uril and DNA

  • Ying Huang
  • Sai-Feng Xue
  • Zhu Tao
  • Qian-Jiang Zhu
  • Yan-Hui Ma
  • Si-Huang Zhong
Original Article

Abstract

The interaction of 6-mercaptopurine (6-MP), an antitumor drug, with cucurbit[7]uril (Q[7]) and DNA in an acetate buffer solution was studied by differential pulse voltammetry (DPV) and cyclic voltammetry(CV). The electrochemical data indicated a 1:1 complex formation of 6-MP with Q[7] and DNA. The formation constants of these complexes were determined based on the variations in the current. Moreover, the interactions of the 6-MP-Q[7] inclusion complex with DNA have been investigated by means of voltammetry. The results suggested that 6-MP displayed a high affinity for Q[7] and that the inclusion complex did not decompose when it bound to DNA. It can be inferred from the experimental data that the binding model of 6-MP to DNA may be ‘electrostatic binding’. In addition, the formation of inclusion complexes between Q[7] and 6-MP was confirmed by UV-Vis spectroscopy and the 1H NMR technique.

Keywords

Voltammetry 6-mercaptopurine Cucurbit[7]uril DNA 

Notes

Acknowledgements

We acknowledge the support of the National Natural Science Foundation of China (Grant No. 20972034), Natural Science fund of Science and Technology Department of GuiZhou Province(Grant No. J-2009-2288), Introduced Talents Start-up Project of GuiZhou University(Grant No.2009023), and the Foundation of the Governor of Guizhou Province.

References

  1. 1.
    Waring, M.J.: In: Roberts, G.C.K. (ed.) Drug action at the Molecular Level, p. 167. Maemillar, London (1977)Google Scholar
  2. 2.
    Clarke, D.A., Philips, F.S., Sternberg, S.S., Stock, C.C., Elion, G.B., Hitchings, G.H.: 6-Mercaptopurine: effects in mouse sarcoma 180 and in normal animals. Cancer Res. 13, 593–604 (1953)Google Scholar
  3. 3.
    Burchenal, J.H., Karnofsky, D.A., Murphy, M.L., Ellison, R.R., Sykes, M.P., Tan, T.C., Mermann, A.C., Yuceoglu, M., Rhoads, C.P.: Clinical evaluation of 6-mercapto-purine in the treatment of leukemia. Am. J. Med. Sci. 228, 371–377 (1954)Google Scholar
  4. 4.
    Davis, A.R., Miller, L., Tamimi, H., Gown, A.: Methotrexate compared with mercaptopurine for early induced abortion. Obstet. Gynecol. 93, 904–909 (1999)CrossRefGoogle Scholar
  5. 5.
    Lobel, E.Z., Korelitz, B.I., Vakher, K., Panagopoulos, G.: Prolonged remission of severe Crohn’s disease after fever and leucopenia caused by 6-mercaptopurine. Dig. Dis. Sci. 49, 336–338 (2004)CrossRefGoogle Scholar
  6. 6.
    Bowen, D.G., Selby, W.S.: Use of 6-mercaptopurine in patients with inflammatory bowel disease previously intolerant of azathioprine. Dig. Dis. Sci. 45, 1810–1813 (2000)CrossRefGoogle Scholar
  7. 7.
    An, H.-Z., Yan, X.-M.: The New Anti-Cancer Drug Handbook. Henan Science Press, Zheng Zhou (2002)Google Scholar
  8. 8.
    Zhi, B.-X., Tuerhong, M.H.T.E., Qu, S.: Electrochemical Studies of Interaction Between Anticancer Drug 6-Mercaptopurine and DNA. J. Anal. Sci. 20, 364–366 (2004)Google Scholar
  9. 9.
    María, I., Rodríguez, T.C.G., Yasiris, C., Naomi, D., Enrique, M.: Molybdenocene–DNA interaction studies using electrochemical analysis. J. Electroanal. Chem. 576, 315–322 (2005)CrossRefGoogle Scholar
  10. 10.
    Zhou, C.-F., Du, X.-S., Li, H.: Studies of interactions among cobalt(III) polypyridyl complexes, 6-mercaptopurine and DNA. Bioelectrochemistry 70, 446–451 (2007)CrossRefGoogle Scholar
  11. 11.
    Zhao, G.C., Zhu, J.J., Zhang, J.J., Chen, H.Y.: Voltammetric studies of the interaction of methylene blue with DNA by means of β–cyclodextrin. Anal. Chim. Acta 394, 337–344 (1999)CrossRefGoogle Scholar
  12. 12.
    Ibrahim, M.S., Shehatta, I.S., Al-Nayeli, A.A.: Voltammetric studies of the interaction of lumazine with cyclodextrins and DNA. J. Pharmaceut. Biomed. Anal. 28, 217–225 (2002)CrossRefGoogle Scholar
  13. 13.
    Wang, X.-P., Pan, J.-H., Yang, X.-D., Niu, C.-D., Zhang, Y., Shuang, S.-M.: Porphyrin binding to DNA investigated by cyclodextrin supramolecular system. Anal. Bioanal. Chem. 374, 445–450 (2002)CrossRefGoogle Scholar
  14. 14.
    Zhang, G.-M., Shuang, S.-M., Dong, C., Liu, D.-S., Choi, M.M.F.: Investigation on DNA assembly to neutral red-cyclodextrin complex by molecular spectroscopy. J Photochem. Photobiol. B 74, 127–134 (2004)CrossRefGoogle Scholar
  15. 15.
    Zhang, G.-M., Pang, Y.-H., Shuang, S.-M., Dong, C., Choi, M.M.F., Liu, D.-S.: Spectroscopic studies on the interaction of Safranine T with DNA in β-cyclodextrin and carboxymethyl-β-cyclodextrin. J Photochem. Photobiol. A 169, 153–158 (2005)CrossRefGoogle Scholar
  16. 16.
    Wang, Y., Zhou, A.-H.: Spectroscopic studies on the binding of methylene blue with DNA by means of cyclodextrin supramolecular systems. J. Photochem. Photobiol. A 190, 121–127 (2007)CrossRefGoogle Scholar
  17. 17.
    Freeman, W.A., Mock, W.L.: Cucurbituril. J. Am. Chem. Soc. 103, 7367–7368 (1981)CrossRefGoogle Scholar
  18. 18.
    Day, A.I., Blanck, R.J., Amold, A.P., Lorenzo, S., Lewis, G.R., Dance, I.: A cucurbituril-based gyroscane: a new supramolecular form. Angew. Angew. Chem. Int. Ed 41, 275–277 (2002)CrossRefGoogle Scholar
  19. 19.
    Liu, S.-M., Xu, L., Wu, C.-T., Feng, Y.-Q.: Preparation and characterization of perhydroxyl-cucurbit[6]uril bonded silica stationary phase for hydrophilic-interaction chromatography. Talanta 64, 929–934 (2004)CrossRefGoogle Scholar
  20. 20.
    Lagona, J., Mukhopadhyay, P., Chakrabarti, S., Isaacs, L.: The cucurbit[n]uril family. Angew. Chem. Int. Ed. 44, 4844–4870 (2005)CrossRefGoogle Scholar
  21. 21.
    Wheate, N.J., Day, A.I., Blanch, R.J., Arnold, A.P., Cullinane, C., Collins, J.G.: Multi-nuclear platinum complexes encapsulated in cucurbit[n]uril as an approach to reduce toxicity in cancer treatment. Chem. commun. 12, 1424–1425 (2004)CrossRefGoogle Scholar
  22. 22.
    Jeon, Y.J., Kim, S.Y., Ko, Y.H., Sakamoto, S., Yamaguchi, K., Kim, K.: Novel molecular drug carrier: encapsulation of oxaliplatin in cucurbit[7]uril and its effects on stability and reactivity of the drug. Org. Biomol. Chem. 3, 2122–2125 (2005)CrossRefGoogle Scholar
  23. 23.
    Dong, N., Xue, S.-F., Tao, Z., Zhao, Y., Cai, J., Liu, H.-C.: Investigation of Q[7] as 5-aminosalicylic acid for colon-specific drug delivery. Acta. Chimica. Sinica 66, 1117–1122 (2008)Google Scholar
  24. 24.
    Huang, Y., Xue, S.-F., Tao, Z., Zhu, Q.-J., Zhang, H., Lin, J.-X., Yu, D.-H.: Solubility enhancement of kinetin through host–guest interactions with cucurbiturils. J. Incl. Phenom. Macrocycl. Chem. 61, 171–177 (2008)CrossRefGoogle Scholar
  25. 25.
    Huang, Y., Xue, S.-F., Tao, Z., Zhu, Q.-J.: Inclusion interactions of cucurbit[7]uril with adenine and its derivatives. Supramol. Chem 20, 279–287 (2008)CrossRefGoogle Scholar
  26. 26.
    Dryhurst, G.: Electrochemistry of Biological Molecules. Academic Press, New York (1977)Google Scholar
  27. 27.
    Dryhurst, G.: Analytical utilization of the polarographic and voltammetric behavior of some sulfur-containing purines. Anal. Chim. Acta 47, 275–284 (1969)CrossRefGoogle Scholar
  28. 28.
    Carter, M.T., Rodriguez, M., Bard, A.J.: Voltammetric studies of the interaction of metal chelates with DNA. 2. Tris-chelated complexes of cobalt(Ш) and iron(П) with 1,l0-Phenanthroline and 2,2′-Bipyridine. J. Am. Chem. Soc. 111, 8901–8911 (1989)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Ying Huang
    • 1
    • 2
  • Sai-Feng Xue
    • 1
  • Zhu Tao
    • 1
  • Qian-Jiang Zhu
    • 1
  • Yan-Hui Ma
    • 1
  • Si-Huang Zhong
    • 1
  1. 1.Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou ProvinceGuizhou UniversityGuiyangPeople’s Republic of China
  2. 2.The Engineering and Research Center for Southwest Bio-Pharmaceutical resources of National Education Ministry of ChinaGuizhou UniversityGuiyangPeople’s Republic of China

Personalised recommendations