Electrochemical and spectrophotometric determination of the formation constants of the ascorbic acid-β-cyclodextrin and dopamine-β-cyclodextrin inclusion complexes

  • M. Palomar-Pardavé
  • G. Alarcón-Ángeles
  • M. T. Ramírez-Silva
  • M. Romero-Romo
  • A. Rojas-Hernández
  • S. Corona-Avendaño
Original Article


From UV–vis spectrophotometry and cyclic voltammetry it is demonstrated the interaction of dopamine, DA, and ascorbic acid, AA, with β-cyclodextrin, βCD, in aqueous media at pH 3.0. The formation constants of the respective inclusion complexes were also determined. The spectrophotometry data fed into the data processing software SQUAD, allowed calculation of the said constants for the AA–βCD complex (H2AA–βCD) giving a value of 3236 M−1, while for the dopamine complex DA–βCD (H3DA+βCD) this was 5888 M−1. From these results, the theoretical absorption spectra were generated which fitted quite well the experimental ones, thus indicating clearly that the constants are reliable. Moreover, from the cyclic voltammetry data, the stated constants were also calculated whereby that of the H2AA–βCD gave a value of 3981 M−1 while for the dopamine complex DA–βCD (H3DA+βCD) it was 4898 M−1. It is noteworthy to say that these values were similar to those found through spectrophotometry.


Dopamine Ascorbic acid β-cyclodextrin Inclusion complex UV–vis spectrophotometry Cyclic voltammetry 



SCA 58250 and GAA 184930 express their gratitude to CONACyT for their postdoctoral and Ph.D., grants. MTRS thanks CONACyT for support through project 82932 and SCA for project 80305. Also GAA, SCA, MRR, MPP and MTRS gratefully thank the SNI for the distinction of their membership and the stipend received. MPP and MRR wish to thank the Departamento de Materiales, UAM-A, for the financial support given through projects (2261203, 2261204, 2261205).


  1. 1.
    Cui, H., Wu, L., Chen, J., Lin, X.: Multi-mode in situ spectroelectrochemical studies of redox pathways of adrenaline. J. Electroanal. Chem. 504, 195–200 (2001)CrossRefGoogle Scholar
  2. 2.
    Fukuda, T., Maeda, Y., Kitano, H.: Stereoselective inclusion of DOPA derivatives by a self-assembled monolayer of thiolated cyclodextrin on a gold electrode. Langmuir 15, 1887–1890 (1999)CrossRefGoogle Scholar
  3. 3.
    Fragoso, A., Almirall, E., Cao, R., Echegoyen, L., González-Jonte, R.: A supramolecular approach to the selective detection of dopamine in the presence of ascorbate. Chem. Commun. 19, 2230–2231 (2004)CrossRefGoogle Scholar
  4. 4.
    Manzanares, M.I., Solís, V., de Rossi, R.H.: Effect of cyclodextrins on the electrochemical behaviour of ascorbic acid on gold electrodes. J. Electroanal. Chem. 407, 141–147 (1996)CrossRefGoogle Scholar
  5. 5.
    Gao, Z.N., Wen, X.L., Li, H.L.: Study of the inclusion complexes of catecholamines with β-cyclodextrin by cyclic voltammetry polish. J. Chem. 76, 1001–1007 (2002)Google Scholar
  6. 6.
    Ramírez-Silva, M.T., Palomar-Pardavé, M.E., González, I., Rojas-Hernández, A.: Carbon paste electrodes with electrolytic binder: influence of the preparation method. Electroanalysis 7, 184–188 (1995)CrossRefGoogle Scholar
  7. 7.
    Martínez, R., Ramírez-Silva, M.T., González, I.: Voltammetric characterization of carbon paste electrodes with a nonconducting binder. Part I: evidence of the influence of electroactive species dissolution into the paste on the voltammetric response. Electroanalysis 10, 336–342 (1998)CrossRefGoogle Scholar
  8. 8.
    Legget, D.: Computational methods for the determination of formation constants. Plenum press, New York (1995)Google Scholar
  9. 9.
    Sánchez-Rivera, A.E., Corona-Avendaño, S., Alarcón-Angeles, G., Rojas-Henández, A., Ramírez-Silva, M.T., Romero-Romo, M.A.: Spectrophotometric study on the stability of dopamine and the determination of its acidity constants. Spectrochim. Acta Part A 59, 3193–3203 (2003)CrossRefGoogle Scholar
  10. 10.
    Rojas-Henández, A., González, I.: Relationship of two-dimensional predominance-zone diagrams with conditional constants for complexation equilibria. Anal. Chim. Acta 187, 279–285 (1986)CrossRefGoogle Scholar
  11. 11.
    Rojas-Henández, A., Ramírez-Silva, M.T., Ibáñez, J.G., González, I.: Construction of multicomponent pourbaix diagrams using generalized species. J. Electrochem. Soc. 138, 365–371 (1991)CrossRefGoogle Scholar
  12. 12.
    Rojas-Hemández, A., Ramírez-Silva, M.T., González, I.: Equilibria among condensed phases and a multi-component solution using the concept of generalized species: Part I. Systems with mixed complexes. Anal. Chim. Acta 278, 321–333 (1993)CrossRefGoogle Scholar
  13. 13.
    Rojas-Hernández, A., Ramírez-Silva, M.T., González, I.: Equilibria among condensed phases and a multi-component solution using the concept of generalized species: part II. Systems with polynuclear species. Anal. Chim. Acta 278, 335–347 (1993)CrossRefGoogle Scholar
  14. 14.
    Matsue, T., Evans, D.H., Osa, T., Kobayashi, N.: Electron-transfer reactions associated with host-guest complexation. Oxidation of ferrocenecarboxylic acid in the presence of β-cyclodextrin. J. Am. Chem. Soc. 107, 3411–3417 (1985)CrossRefGoogle Scholar
  15. 15.
    Evans, D.H.: Two-component diffusion with reaction in chronoamperometry: approach to equilibrium conditions in the diffusion layer. J. Electroanal. Chem. 324, 387–395 (1992)CrossRefGoogle Scholar
  16. 16.
    Dang, X.-J., Tong, J., Li, H.-L.: The electrochemistry of the inclusion complex of anthraquinone with β-cyclodextrin studied by means of OSWV. J. Incl. Phenom. 24, 275–286 (1996)CrossRefGoogle Scholar
  17. 17.
    Corona-Avendaño, S., Alarcón-Ángeles, G., Rosquete-Pina, G.A., Rojas-Hernández, A., Gutiérrez, A., Ramírez-Silva, M.T., Romero-Romo, M., Palomar-Pardavé, M.: New insights on the nature of the chemical species involved during the process of dopamine deprotonation in aqueous solution: theoretical and experimental study. J. Phys. Chem. B 111, 1640–1647 (2007)CrossRefGoogle Scholar
  18. 18.
    Chmurski, K., Majewska, U.E., Bilewicz, R.: Analytical applications of gold electrodes modified with monolayers of thiolated cyclodextrins. J. Incl. Phenom. Macrocycl. Chem. 57, 385–389 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • M. Palomar-Pardavé
    • 1
  • G. Alarcón-Ángeles
    • 1
  • M. T. Ramírez-Silva
    • 2
  • M. Romero-Romo
    • 1
  • A. Rojas-Hernández
    • 2
  • S. Corona-Avendaño
    • 1
  1. 1.Departamento de MaterialesUniversidad Autónoma Metropolitana AzcapotzalcoMéxico, DFMéxico
  2. 2.Departamento de QuímicaUniversidad Autónoma Metropolitana IztapalapaMéxico, DFMéxico

Personalised recommendations