The synthesis and characterization of single substitute melamine cored Schiff bases and their [Fe(III) and Cr(III)] complexes

  • Şaban Uysal
  • H. İsmet Uçan
Original Article


In this study, firstly, two single substitute novel ligands have been synthesized by reacting melamine with 3,4,-dihydroxybenzaldeyhde or 4-carboxybenzaldehyde. Then, eight new mono nuclear single substitute [Salen/Salophen Fe(III) and Cr(III)] complexes have been synthesized by reacting the ligands [2-(3,4-dihydroxybenzimino)-4,6-diamimo-1,3,5-triazine and 2-(4-carboxybenzimino)-4,6-diamimo-1,3,5-triazine)] with tetradentate Schiff bases N,N′-bis(salicylidene)ethylenediamine-(salenH2) or bis(salicylidene)-o-phenylenediamine-(salophen H2). And then, all ligands and complexes have been characterized by means of elementel analysis, FT-IR spectroscopy, 1H NMR, LC–MS, thermal analyses and magnetic suscebtibility measurements. Finally, metal ratios of the prepared complexes were determined using AAS. The complexes have also been characterized as disorted octahedral low-spin Fe(III) and Cr(III) bridged by catechol and COO groups.


Melamine Salen Salophen Schiff bases Catechol 



The authors would like to acknowledge the Scientific Research Projects (BAP) of Selcuk University for supporting this study through a grant: 2005/5201005.


  1. 1.
    Carmouna, M., Blanchoud, H., Teil, M.J., Blanchard, M., Chevreuil, M.: Triazines in the Marne and the Seine Rivers (France) longitudinal evolution and flows. Water Air Soil Pollut. 132, 1 (2001). doi: 10.1023/A:1012017025060 CrossRefGoogle Scholar
  2. 2.
    Klenke, B., Stewart, M., Barrett, M.P., Brun, R., Gilbert, I.H.: Synthesis and biological evaluation of s-triazine substituted polyamines as potential new anti-trypanosomal drugs. J. Med. Chem. 44, 3440 (2001). doi: 10.1021/jm010854+ CrossRefGoogle Scholar
  3. 3.
    Patel, H.S., Patel, V.C.: Polyimides containing s-triazine ring. Eur. Polym. J. 2263 (2001). doi: 10.1016/S0014-3057(01)00107-0
  4. 4.
    Hoog, P., Gamez, P., Lüken, M., Roubeau, O., Krebs, B., Reedijk, J.: Hexanuclear copper(II) complex of a novel poly(pyridine) ligand exhibiting unique long distance ferromagnetic interactions through a nitrato-O, O′ bridge. Inorg. Chim. Acta 357, 213–218 (2004). doi: 10.1016/S0020-1693(03)00428-6 CrossRefGoogle Scholar
  5. 5.
    Wang, X., Zhang, Q.: Synthesis, characterization, and cure properties of phosphorus-containing epoxy resins for flame retardance. Eur. Polym. J. 40, 385–395 (2004). doi: 10.1016/j.eurpolymj.2003.09.023 CrossRefGoogle Scholar
  6. 6.
    Ashmawy, F.M., Ujaimi, A.R., McAuliffe, C.A., Parish, R.V., Pritchard, R.G.: A facile synthesis of [{Fe(salphen)}2O] (salphenH2 = N,N′-o-phenylenebis(salicylidineimine)) and the X-ray crystal structure of [{Fe(salphen)}2O] DMSO. Inorg. Chim. Acta 187, 155–158 (1991). doi: 10.1016/s0020-1693(00)90388-8 CrossRefGoogle Scholar
  7. 7.
    Coggon, P., McPail, A.T., Gross, P.M., Mabbs, F.E., McLachlan, V.N.: Crystal and molecular structure and magnetic anisotropy of μ-oxo-bis-[N,N-ethylenebis(salicylidene iminato)iron(III)]-dichloromethane. J. Chem. Soc. A. 1014–1019 (1971). doi: 10.1039/J19710001014
  8. 8.
    Dorfman, J.R., Girerd, J.J., Simhon, E.D., Stack, T.D.P., Holm, R.H.: Synthesis, structure, and electronic features of (.mu.-sulfido)bis[(N,N′-ethylenebis-(salicylaldiminato))iron(III)], [Fe(salen)]2S, containing the only authenticated example of the iron(III)–sulfur–iron(III) single bridge. Inorg. Chem. 23, 4407–4412 (1984). doi: 10.1021/ic00194a002 CrossRefGoogle Scholar
  9. 9.
    Gerloch, M., McKenzie, E.D., Towl, A.D.C.: Crystal and molecular structure of μ-oxo-bis-[N,N′-ethylenebis(salicylideneiminato)iron(III)]-bispyridine. J. Chem. Soc. A. 2850–2858 (1969). doi:  10.1039/J19690002850
  10. 10.
    Elmali, A., Atakol, O., Svobodaand, I., Fuess, H.Z.: Structure of [N,N′-o-phenylenebis(salicylideneaminato)]iron(III) chloride as a five-coordinate monomer. Kristallographie 203, 273 (1993)Google Scholar
  11. 11.
    Kamenicek, J., Travnicek, Z., Sindelar, Z., Walla, J.: Redetermination of the structure of μ-oxo-bis[N,N′-o-phenylene-bis(salicylaldiminato) iron(III)]dimethyl sulfoxide solvate. Pol. J. Chem. 70, 854 (1996)Google Scholar
  12. 12.
    Marek, J., Smekal, Z., Travnicek, Z.: Structure of (μ-oxo)-bis[N,N′-ethylene-bis(salicylaldiminato)iron(III)]. Acta Univ. Palacki Olomuc., Fac. Rerum Nat. 35, 33 (1996)Google Scholar
  13. 13.
    Kopel, P., Sindelar, Z., Klicka, R.: Complexes of iron(III) salen and saloph Schiff bases with bridging dicarboxylic and tricarboxylic acids. Transit. Met. Chem. 23, 139 (1998). doi: 10.1023/A:1006990925318 CrossRefGoogle Scholar
  14. 14.
    Wollmann, R.G., Hendrickson, D.N.: Reaction iron(III) complexes with organic acids: a characterization of the products. Inorg. Chem. 17(4), 926–930 (1978). doi: 10.1021/ic50182a026 CrossRefGoogle Scholar
  15. 15.
    Koç, Z.E., Uçan, H.İ.: Complexes of iron(III) salen and saloph Schiff bases with bridging 2,4,6-tris(2,5-dicarboxyphenylimino-4-formylphenoxy)-1,3,5-triazine and 2,4,6-tris(4-carboxyphenylimino-4′-formylphenoxy)-1,3,5-triazine. Transit. Met. Chem. 32, 597–602 (2007). doi: 10.1007/s11243-007-0213-7 CrossRefGoogle Scholar
  16. 16.
    Uysal, Ş., Uçan, H.İ.: The synthesis and characterization of melamine based Schiff bases and its trinuclear[salen/salophenFe(III)] and [salen/salophenCr(III)] capped complexes. J. Incl. Phenom. Macrocycl. Chem. 65(3), 299–304 (2009). doi: 10.1007/s10847-009-9581-2 CrossRefGoogle Scholar
  17. 17.
    Uysal, Ş., Uçan, H.İ.: The synthesis and characterization of 2,4,6-tris(3,4-dihydroxybenzimino)-1,3,5-triazine and its [salen/salophenFe(III)] and [salen/salophenCr(III)] capped complexes. J. Incl. Phenom. Macrocycl. Chem. 65(3), 403–409 (2009). doi: 10.1007/s10847-009-9598-6 CrossRefGoogle Scholar
  18. 18.
    Barone, G., Silvestri, A., La Manna, G.: DFT computational study on FeIII-N,N′-ethylene-bis(salicylideneiminato) derivatives. J. Mol. Struct.: THEOCHEM. 715, 79–83 (2005)CrossRefGoogle Scholar
  19. 19.
    Woldemariam, G.A., Mandal, S.S.: Iron(III)-salen damages DNA and induces apoptosis in human cell via mitochondrial pathway. J. Inorg. Biochem. 102, 740–747 (2008)CrossRefGoogle Scholar
  20. 20.
    Juturu, V., Komorowski, J.R.: Letter to the editor. Am. J. Clin. Nutr. 78, 192–193 (2003)Google Scholar
  21. 21.
    Ryan, G.J., Wanko, N.S., Redman, A.R., Cook, C.B.: Chromium as adjunctive treatment for type 2 diabetes. Ann. Pharmacother. 37, 876–885 (2003). doi: 10.1345/aph.1C304 CrossRefGoogle Scholar
  22. 22.
    Govindaraju, K., Ramasami, T., Ramaswamy, D.: Chymotrypsin-catalyzed hydrolysis of chromium(III) derivatives of insulin: evidence for stabilization of the protein through interactions with metal ions. J. Inorg. Biochem. 35, 127 (1989). doi: 10.1016/0162-0134(89)80005-4 CrossRefGoogle Scholar
  23. 23.
    Shrivastava, H.Y., Devaraj, S.N., Nair, B.U.: A Schiff base complex of chromium(III): an efficient inhibitor for the pathogenic and invasive potential of Shigella dysenteriae. J. Inorg. Biochem. 98, 387–392 (2004). doi: 10.1016/j.jinorgbio.2003.11.012 CrossRefGoogle Scholar
  24. 24.
    Canali, L., Sherrington, D.C.: Utilisation of homogeneous and supported chiral metal(salen) complexes in asymmetric catalysis. Chem. Soc. Rev. 28, 85–93 (1999). doi: 10.1039/a806483k CrossRefGoogle Scholar
  25. 25.
    Yoon, T.P., Jacobsen, E.N.: Privileged chiral catalysts. Science. 299, 1691–1693 (2003). doi: 10.1126/science.1083622 CrossRefGoogle Scholar
  26. 26.
    Cozzi, P.G.: Metal–Salen Schiff base complexes in catalysis: practical aspects. Chem. Soc. Rev. 33, 410–421 (2004). doi: 10.1039/b307853c CrossRefGoogle Scholar
  27. 27.
    Larrow, J.F., Jacobsen, E.N.: Asymmetric processes catalyzed by chiral (Salen)metal complexes. Top. Organomet. Chem. 6, 123–152 (2004). doi: 10.1007/b11772 Google Scholar
  28. 28.
    Yamashita, Y., Katsuki, T.: Asymmetric Diels-Alder reaction using oxo(salen)manganese(V) complex as a Lewis acid catalyst. Synlett. 8, 829–830 (1995). doi: 10.1055/s-1995-5106 CrossRefGoogle Scholar
  29. 29.
    Srinivasan, K., Michaud, P., Kochi, J.K.: Epoxidation of olefins with cationic (salen)manganese(III) complexes. The modulation of catalytic activity by substituents. J. Am. Chem. Soc. 108, 2309–2320 (1986). doi: 10.1021/ja00269a029 CrossRefGoogle Scholar
  30. 30.
    Samsel, E.G., Srinivasan, K., Kochi, J.K.: Mechanism of the chromium-catalyzed epoxidation of olefins. Role of oxochromium(V) cations. J. Am. Chem. Soc. 107, 7606–7617 (1985). doi: 10.1021/ja00311a064 CrossRefGoogle Scholar
  31. 31.
    Yoon, H., Burrows, C.J.: Catalysis of alkene oxidation by nickel salen complexes using sodium hypochlorite under phase-transfer conditions. J. Am. Chem. Soc. 110, 4087–4089 (1988). doi: 10.1021/ja00220a086 CrossRefGoogle Scholar
  32. 32.
    Luts, T., Frank, R., Suprun, W., Fritzsche, S., Hey-Hawkins, E., Papp, H.: Epoxidation of olefins catalyzed by novel Mn(III) and Mo(IV)-Salen complexes immobilized on mesoporous silica gel Part II: study of the catalytic epoxidation of olefins. J. Mol. Catal. A Chem. 273, 250–258 (2007). doi: 10.1016/j.molcata.2007.04.010 CrossRefGoogle Scholar
  33. 33.
    Kopel, P., Sindelar, Z., Klicka, R.: Complexes of iron(III) salen and saloph Schiff bases with bridging dicarboxylic and tricarboxylic acids. Transit. Met. Chem. 23, 139 (1998). doi: 10.1023/A:1006990925318 CrossRefGoogle Scholar
  34. 34.
    Kopel, P., Sindelar, Z., Biler, M., Klicka, R.: Complexes of iron(III) salen and saloph Schiff bases bridged by dicarboxylic acids. Pol. J. Chem. 72(9), 2060–2066 (1998)Google Scholar
  35. 35.
    Gembicky, M., Boca, R., Renz, F.: A heptanuclear Fe(II)–Fe(III)6 system with twelve unpaired electrons. Inorg. Chem. Commun. 3, 662–665 (2000). doi: 10.1016/S1387-7003(00)00160-X CrossRefGoogle Scholar
  36. 36.
    Tahmassebi, D.C., Sasaki, T.: Synthesis of a new trialdehyde template for molecular imprinting. J. Org. Chem. 59, 679–681 (1994). doi: 10.1021/jo00082a034 CrossRefGoogle Scholar
  37. 37.
    Yang, G.M., Liao, D.Z., Jiang, Z.H., Yan, S.P., Wang, G.L.: Novel oxalate-bridged trinuclear FeIII–MII–FeIII (M = Cu and VO) complexes: synthesis and magnetism. Transit. Met. Chem. 23, 313–315 (1998). doi: 10.1023/A:1015777304222 CrossRefGoogle Scholar
  38. 38.
    Uysal, Ş., Coşkun, A., Koç, Z.E., Uçan, H.İ.: Synthesis and characterization of a new dioxime and its heterotrinuclear BF2 + capped complexes. J. Macromol. Scı. A. 45(9), 727–732 (2008). doi: 10.1080/10601320802222616 CrossRefGoogle Scholar
  39. 39.
    Khalil, S.M., Emara, A.A.: Asymmetric Schiff base (N2O3) complexes as ligands towards Mn(II), Fe(III) and Co(II), synthesis and characterization. J. Coord. Chem. 55, 17–32 (2002). doi: 10.1080/00958970211871 CrossRefGoogle Scholar
  40. 40.
    Karatas, I., Ucan, H.I.: The synthesis of biphenylglyoxime and bis(phenylglyoxime) and their complexes with Cu(II), Ni(II) and Co(II). Synth. React. Inorg. Met.-Org. Chem. 28, 383–391 (1998). doi: 10.1080/00945719809349362 Google Scholar
  41. 41.
    Ucan, H.I., Karatas, I., Irez, G., Deveci, M.A., Mercimek, B.: The synthesis of four new Schiff bases and some of their transition metal complexes. Synth. React. Inorg. Met.-Org. Chem. 28(3), 331–338 (1998). doi: 10.1080/00945719809349358 Google Scholar
  42. 42.
    Koç, Z.E., Uçan, H.İ.: Complexes of iron(III) and chrom(III) salen and saloph Schiff bases with bridging 2,4,6-tris(4-nitrophenylimino-4′-formylphenoxy)-1,3,5-triazine. J. Macromol. Scı. A. 45(12), 1072–1077 (2008). doi: 10.1080/10601320802458087 CrossRefGoogle Scholar
  43. 43.
    Dotson, D.L.: Part 1. The mesomorphic properties of aryloxy-s-triazines and their analogs, Part 2. The synthesis and polymerization behavior of α-aminonitriles and related compounds. PhD. Dissertation, Virginia Polytechnic Institute and State University, Virginia (1996)Google Scholar
  44. 44.
    El-Metwally, N.M., Gabr, I.M., El-Asmy, A.A.: Spectral, magnetic, electrical and thermal studies on malonyl bis(thiosemicarbazide) complexes. Transit. Met. Chem. 31, 71–78 (2006). doi: 10.1007/s11243-005-6347-6 CrossRefGoogle Scholar
  45. 45.
    Brzyska, W., Krol, A.: Properties and thermal decomposition in air atmosphere of Co(II), Ni(II), Cu(II) and Zn(II) benzene-1,2-dioxyacetates. Thermochim. Acta 223, 241–249 (1993). doi: 10.1016/0040-6031(93)80140-6 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceSelcuk UniversityKonyaTurkey

Personalised recommendations