Improved aqueous Cannizzaro reaction in presence of cyclodextrin

Original Article


An aqueous hydroxypropyl-β-cyclodextrin solution has been used to increase the conversion of 4-biphenylcarboxaldehyde into the corresponding alcoholic and carboxylic substrates, by means of a Cannizzaro reaction. The observed enhancement has been ascribed to a partial solubilization of 4-biphenylcarboxaldehyde. In addition, as the main part of the organic substrates still remains insoluble, synthesized products are easily recovered by filtration. As a consequence, the basic cyclodextrin solution might also be reused for a new synthetic cycle, without significant loss of conversion. Aqueous solid–liquid biphasic reaction in presence of cyclodextrins thus seems to be a promising tool in the green chemistry field.


Cyclodextrin Phase transfer agent Solid–liquid reaction Cannizzaro Reaction 






Authors wish to thank IRENI for financial support.


  1. 1.
    Szejtli, J.: Chemistry, physical and biological properties of cyclodextrins. Compr. Supramol. Chem. 3, 5–40 (1996)Google Scholar
  2. 2.
    Del Valle, E.M.M.: Cylodextrins and their uses: a review. Process Biochem. 39(9), 1033–1046 (2004)CrossRefGoogle Scholar
  3. 3.
    Uekama, K., Hirayama, F., Irie, T.: Cyclodextrin drug carrier systems. Chem. Rev. 98(5), 2045–2076 (1998)CrossRefGoogle Scholar
  4. 4.
    Dabbawala, A.A., Parmar, J.N., Jasra, R.V., Bajaj, H.C., Monflier, E.: Cobalt catalyzed hydroformylation of higher olefins in the presence of chemically modified cyclodextrins. Catal. Commun. 10(14), 1808–1812 (2009)CrossRefGoogle Scholar
  5. 5.
    Hapiot, F., Leclercq, L., Azaroual, N., Fourmentin, S., Tilloy, S., Monflier, E.: Rhodium-catalyzed hydroformylation promoted by modified cyclodextrins: current scope and future developments. Curr. Org. Synth. 5(2), 162–172 (2008)CrossRefGoogle Scholar
  6. 6.
    Bhosale, S.V., Bhosale, S.V.: β-Cyclodextrin as a catalyst in organic synthesis. Mini Rev. Org. Chem. 4(3), 231–242 (2007)CrossRefGoogle Scholar
  7. 7.
    Kunishima, M., Watanabe, Y., Terao, K., Tani, S.: Substrate-specific amidation of carboxylic acids in a liquid–liquid two-phase system using cyclodextrins as inverse phase-transfer catalysts. Eur. J. Org. Chem. 22, 4535–4540 (2004)CrossRefGoogle Scholar
  8. 8.
    Tilloy, S., Bricout, H., Monflier, E.: Cyclodextrins as inverse phase transfer catalysts for the biphasic catalytic hydrogenation of aldehydes: a green and easy alternative to conventional mass transfer promoters. Green Chem. 4(3), 188–193 (2002)CrossRefGoogle Scholar
  9. 9.
    Kalck, P., Miquel, L., Dessoudeix, M.: Various approaches to transfers improvement during biphasic catalytic hydroformylation of heavy alkenes. Catal. Today 42(4), 431–440 (1998)CrossRefGoogle Scholar
  10. 10.
    Bowden, K., El-Kaissi, F.A., Ranson, R.J.: Intramolecular catalysis. Part 5. The intramolecular Cannizzaro reaction of o-phthalaldehyde and [α, α′-2H2]-o-phthalaldehyde. J. Chem. Soc., Perkin Trans. 2 12, 2089–2092 (1990)CrossRefGoogle Scholar
  11. 11.
    Basavaiah, D., Sharada, D.S., Veerendhar, A.: Organo-base mediated Cannizzaro reaction. Tetrahedron Lett. 47(32), 5771–5774 (2006)CrossRefGoogle Scholar
  12. 12.
    Yang, X., Guo, J., Zou, G.: Lanthanide-catalysed cross-Cannizzaro reduction of aromatic aldehydes with formaldehyde. Lett. Org. Chem. 2(2), 145–147 (2005)CrossRefGoogle Scholar
  13. 13.
    Bikbaeva, G.G., Kislina, I.S., Vinnik, M.I.: Kinetics of the cross Cannizzaro reaction of anisic aldehyde with formaldehyde in aqueous solutions of KOH. Bull. Acad. Sci. USSR CH+ 23(12), 2616–2620 (1975)CrossRefGoogle Scholar
  14. 14.
    Abbaszadeh, M.R., Bowden, K.: Intramolecular catalysis. Part 4. The intramolecular Cannizzaro reaction of biphenyl-2,2-dicarbaldehyde, [α,α’-2H2]biphenyl-2,2′-dicarbaldehyde and 4,4′-or 5,5′- or 6,6′-disubstituted biphenyl-2,2′-dicarbaldehydes. J. Chem. Soc. Perkin Trans. 12(2), 2081–2087 (1990)Google Scholar
  15. 15.
    Bowden, K., Butt, A.M., Streater, M.: Intramolecular catalysis. Part 8. The intramolecular Cannizzaro reaction of naphthalene-1,8-dicarbaldehyde and [αα′-2H2]naphthalene-1,8-dicarbaldehyde. J. Chem. Soc., Perkin Trans. 2 4, 567–571 (1992)CrossRefGoogle Scholar
  16. 16.
    Morooka, S., Wakai, C., Matubayasi, N., Nakahara, M.: Noncatalytic Cannizzaro-type reaction of acetaldehyde in supercritical water. Chem. Lett. 32, 310–311 (2003)CrossRefGoogle Scholar
  17. 17.
    Sharifi, A., Mojtahedi, M.M., Saidi, M.R.: Microwave irradiation techniques for the Cannizzaro reaction. Tetrahedron Lett. 40(6), 1179–1180 (1999)CrossRefGoogle Scholar
  18. 18.
    Mohamadi, F., Richards, N.G.J., Guida, W.C., Liskamp, R., Lipton, M., Caufield, C., Chang, G., Hendrickson, T., Still, W.C.: MacroModel—an integrated software system for modeling organic and bioorganic molecules using molecular mechanics. J. Comput. Chem. 11, 440–467 (1990)CrossRefGoogle Scholar
  19. 19.
    Cheng, A., Best, S.A., Merz Jr, K.M., Reynolds, C.H.: GB/SA water model for the Merck molecular force field (MMFF). J. Mol. Graph. Model. 18(3), 273–282 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Univ Lille Nord de FranceLilleFrance
  2. 2.ULCO, LSOEDunkerqueFrance

Personalised recommendations