Amide-based tripodal receptors for selective anion recognition

  • Gülşen Öztürk
  • Mehmet Çolak
  • Mahmut Toğrul
Original Article


In order to improve efficiency and reduce waste production; the microwaves offer mild methods to prepare amides based neutral tripodals receptors directly from non activated carboxylic acids and amines in the absences of coupling reagents and solvents, with high yield and very short time. The preliminary 1H NMR titration experiments revealed that tripodals receptor 1 and 2 can recognize H2PO4 and C6H5CO2 through a 1:1 binding-stoichiometry in preference over other anions (PF6 , ClO4 , HSO4 and Br). The tripodal receptor 2 showed higher binding to the all examined anions than the tripodal receptor 1.


Anion recognition Tripodal receptor Amides Microwave NMR titration 


  1. 1.
    Beer, P.D., Gale, P.A.: Anion recognition and sensing: the state of the art and future perspectives. Angew. Chem. Int. Engl. 40, 486–516 (2001)CrossRefGoogle Scholar
  2. 2.
    Kuswandi, B., Nuriman, Verboom, W., Reinhoudt, D.N.: Tripodal receptors for cation and anion sensors. Sensor 6, 978–1017 (2006)CrossRefGoogle Scholar
  3. 3.
    Brunetti, M., Terracina, L., Timio, M., Saronio, P., Capodicasa, E.: Plasma sulfate concentration and hyperhomocysteinemia in hemodialysis patients. J. Nephrol. 14, 27–31 (2001)Google Scholar
  4. 4.
    Vickers, M.S., Beer, P.D.: Anion templated assembly of mechanically interlocked structures. Chem. Soc. Rev 36, 211–225 (2007)CrossRefGoogle Scholar
  5. 5.
    Huggins, M.T., Musto, C., Munro, L., Catalano, J.: Molecular recognition studies with a simple dipyrrinone. Tetrahedron 63, 12994–12999 (2007)CrossRefGoogle Scholar
  6. 6.
    Timoshenko, A.V., Maslakova, O.V., Werle, B., Bezmen, V.A., Rebeko, V.Y., Kayser, K.: Presentation of NO-metabolites (nitrate/nitrite) in blood serum and pleural effusions from cancer patients with pleurisy. Cancer Lett. 182, 93–99 (2002)CrossRefGoogle Scholar
  7. 7.
    Sato, K., Arai, S., Yamagishi, T.: New tripodal anion receptor with C–H–X-hydrogen bonding. Tetrahedron Lett. 40, 5219–5222 (1999)CrossRefGoogle Scholar
  8. 8.
    Ballester, P., Costa, A., Deya, P.M., Vega, M., Morey, J.: Influence of remote intramolecular hydrogen bonds on the thermodynamics of molecular recognition of cis-1,3,5-cyclohexanetricarboxylic acid. Tetrahedron Lett. 40, 171–174 (1999)CrossRefGoogle Scholar
  9. 9.
    Fan, A.L., Hong, H.K., Valiyaveettil, S., Vittal, J.J.: A urea-incorporated receptor for aromatic carboxylate anion recognition. J. Supramol.Chem. 2, 247–254 (2002)CrossRefGoogle Scholar
  10. 10.
    Cameron, B.R., Loeb, S.J.: Bis(amido)calix[4]arene in the pinched cone conformation as tuneable hydrogen-bonding anion receptors. J. Chem. Soc. Chem.Com. 573–574 (1997)Google Scholar
  11. 11.
    Gale, P.A.: Anion coordination and anion-directed assembly: highlights from 1997 and 1998. Coord. Chem.Com. Rev 199, 181–233 (2000)CrossRefGoogle Scholar
  12. 12.
    Qureshi, N., Yufit, D.S., Howard, J.A.K., Steed, J.W.: Ion-pair binding by mixed N, S-donor 2-ureidopyridine ligands. Dalton Trans. 29, 5708–5714 (2009)CrossRefGoogle Scholar
  13. 13.
    Gale, P.A.: Anion and ion-pair receptor chemistry: highlights from 2000 and 2001. Coord. Chem.Com. Rev. 240, 191–223 (2003)Google Scholar
  14. 14.
    Gale, P.A.: Anion receptor chemistry: highlights from 2007. Chem. Soc. Rev. 38, 520–563 (2009)CrossRefGoogle Scholar
  15. 15.
    Kang, S.O., Begum, R.A., Bowmna, J.K.: Amide-based ligands for anion coordination. Angew. Chem. Int. Ed. 45, 7882–7884 (2006)CrossRefGoogle Scholar
  16. 16.
    Katayev, E.A., Ustynyuk, Y.A., Sesler, J.L.: Receptors for tetrahedral oxyanions. Coord. Chem.Com. Rev. 250, 3004–3037 (2006)CrossRefGoogle Scholar
  17. 17.
    Shang, X.F., Lin, H., Cai, E.S., Lin, H.K.: Effects of the receptors bearing phenol group and copper(II) on the anion recognition and their analytical application. Talanta 73, 296–303 (2007)CrossRefGoogle Scholar
  18. 18.
    Clare, J.P., Ayling, A.J., Joss, J.B., Sisson, A.L., Magro, G., Perez-Payan, M.N., Lambert, T.N., Shukla, R., Smith, B.D., Devis, A.P.: Substrate discrimination by cholapod anion receptors: geometric effects and the “affinity-selectivity principle”. J. Am. Soc. Chem. Soc. 127, 10739–10746 (2005)CrossRefGoogle Scholar
  19. 19.
    Shao, J., Lin, H., Lin, H.K.: A simple and efficient colorimetric anion receptor for H2PO4 . Spectrochim. Acta A. 70, 682–685 (2008)CrossRefGoogle Scholar
  20. 20.
    Borocchi, M., Boca, L.D., Gomez, D.E., Fabbnizzi, L., Licchelli, M., Monzani, E.: Anion-induced urea deprotonation. Chem. Eur. J. 11, 3097–3104 (2005)CrossRefGoogle Scholar
  21. 21.
    Shao, J., Yu, M., Lin, H., Lin, H.K.: A novel fluorescent and colorimetric anion sensor based on thiourea derivative in competitive media. Spectrochim. Acta A. 70, 1217–1221 (2008)CrossRefGoogle Scholar
  22. 22.
    Jose, D.A., Kumar, D.K., Ganguly, B., Das, A.: Efficient and simple colorimetric fluoride ıon sensor based on receptors having urea and thiourea binding sites. Org. Lett. 6, 3445–3448 (2004)CrossRefGoogle Scholar
  23. 23.
    Fielding, L.: Determination of association constants (K a) from solution NMR data. Tetrahedron 56, 6151–6170 (2000)CrossRefGoogle Scholar
  24. 24.
    Sünkür, M., Barış, D., Hosgoren, H., Toğrul, M.: Novel C-2-symmetric macrocycles bearing diamide-diester groups: synthesis and enantiomeric recognition for primary alkyl ammonium salts. J. Org. Chem. 73, 2570–2575 (2008)CrossRefGoogle Scholar
  25. 25.
    Caddick, S.: Microwave assisted organic reactions. Tetrahedron 51, 10403–10432 (1995)CrossRefGoogle Scholar
  26. 26.
    Loupy, A.: Microwaves in organic synthesis. Wiley-VCH, Weinheim (2002)CrossRefGoogle Scholar
  27. 27.
    Kappe, C.O.: Controlled microwave heating in modern organic synthesis. Angew. Chem. Int. Ed. 43, 6250–6284 (2004)CrossRefGoogle Scholar
  28. 28.
    Kappe, C.O., Stadler, A.: Microwaves in organic and medicinal chemistry. Wiley-VCH, Weinheim (2005)CrossRefGoogle Scholar
  29. 29.
    Varma, R.S.: Solvent-free organic syntheses—using supported reagents and microwave irradiation. Green Chem. 43–5 (1999)Google Scholar
  30. 30.
    Perreux, L., Loupy, A., Volatran, F.: Solvent-free preparation of amides from acids and primary amines under microwave irradiation. Tetrahedron 58, 2155–2162 (2002)CrossRefGoogle Scholar
  31. 31.
    Baldwin, B., Hirose, T., Wang, Z.: Improved microwave oven synthesis of amides and imides promoted by imidazole; convenient transport agent preparation. Chem. Commun. 23, 2269–2270 (1996)Google Scholar
  32. 32.
    Sauer, D.R., Kavlin, D., Phelan, K.M.: Microwave-assisted synthesis utilizing supported reagents: a rapid and efficient acylation procedure. Org. Lett. 5, 4721–4724 (2003)CrossRefGoogle Scholar
  33. 33.
    Perreux, L., Loupy, A., Delmotte, M.: Microwave effects in solvent-free esters aminolysis. Tetrahedron 59, 2185–2189 (2003)CrossRefGoogle Scholar
  34. 34.
    Diaz-Ortiz, A., Moreno, A.: Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chem. Soc. Rev. 34, 164–168 (2005)CrossRefGoogle Scholar
  35. 35.
    Karis, N., Loughlin, W., Jenkins, I.: A facile and efficient method for the synthesis of novel pyridone analogues by aminolysis of an ester under solvent-free conditions. Tetrahedron 63, 12303–12309 (2007)CrossRefGoogle Scholar
  36. 36.
    Ferroud, D., Godart, M., Ung, S., Borderies, H., Guy, A.: Microwaves-assisted solvent-free synthesis of N-acetamides by amidation or aminolysis. Tetrahedron Lett. 49, 3004–3008 (2008)CrossRefGoogle Scholar
  37. 37.
    Basel, Y., Hassner, A.: Activation of carboxylic acids as their active esters by means of tert-butyl 3-(3, 4-dihydrobenzotriazine-4-on)yl carbonate. Tetrahedron Lett. 43, 2529–2533 (2002)CrossRefGoogle Scholar
  38. 38.
    Öztürk, G., Gümgüm, B., Kızıl, M., Emen, S.: Solvent-free synthesis of nitrilotriacetamide and diketopiperazines from nitrilotriacetic acid under microwave irradiation and their antimicrobial activity. Synth. Commun. 37(22), 3981–3988 (2007)CrossRefGoogle Scholar
  39. 39.
    Benessi, H.A., Hildebrand, J.H.: A spectrophotometric ınvestigation of the ınteraction of ıodine with aromatic hydrocarbons. J. Am.Chem. Soc. 71, 2703–2707 (1949)CrossRefGoogle Scholar
  40. 40.
    Mathur, R., Becker, E.D., Bradley, R.B., Li, N.C.: Proton magnetic resonance studies of hydrogen bonding of benzenethiol with several hydrogen acceptors. J. Phys. Chem. 67, 2190 (1963)CrossRefGoogle Scholar
  41. 41.
    Hanna, M.W., Ashbough, A.L.: Nuclear magnetic resonance study of molecular complexes of 7, 7, 8, 8-tetracyanoquinodimethane and aromatic donors. J. Phys. Chem. 66, 811–816 (1964)CrossRefGoogle Scholar
  42. 42.
    Korendovych, I.V., Cho, M., Butler, P.L., Staples, R.J., Rybak-Akimova, E.V.: Anion binding to monotopic and ditopic macrocyclic amides. Org. Lett. 8, 3171–3174 (2006)CrossRefGoogle Scholar
  43. 43.
    Schmidtchen, F.P., Berger, M.: Artificial organic host molecules for anions. Chem Soc Rev 97, 1609 (1997)Google Scholar
  44. 44.
    Xie, H., Yi, S., Wu, S.: Study on host-guest complexation of anions based on tri-podal naphthylthiourea derivatives. J. Chem. Soc. Perkin Trans. 2, 2571–2574 (1999)Google Scholar
  45. 45.
    Raposo, C., Almaraz, M., Martin, M., Weinrich, V., Mussons, M.L., Alcazar, V., Caballero, M.C., Moran, J.R.: Tris(2-aminoethyl)amine, a suitable spacer for phosphate and sulfate receptors. Chem. Lett. 759–760 (1995)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Gülşen Öztürk
    • 1
  • Mehmet Çolak
    • 1
  • Mahmut Toğrul
    • 1
  1. 1.Faculty of Science, Departmen of ChemistryUniversity of DicleDiyarbakırTurkey

Personalised recommendations