Controlled release of antifungal volatiles of thyme essential oil from β-cyclodextrin capsules

  • C. L. Del Toro-Sánchez
  • J. F. Ayala-Zavala
  • L. Machi
  • H. Santacruz
  • M. A. Villegas-Ochoa
  • E. Alvarez-Parrilla
  • G. A. González-Aguilar
Original Article


Thyme essential oil (TO) is a good antimicrobial agent, however, its high volatility and reactivity limits its application as food preservative. β-cyclodextrin (β-CD) is able to encapsulate organic molecules, forming host–guest complexes with hydrophobic and volatile molecules such as TO constituents, controlling volatility and reactivity. In addition, controlled released of the β-CD trapped compounds could be possible by exposing the capsules to high relative humidity (RH). With this in mind, the controlled release of antifungal volatiles throughout exposure of TO:β-CD capsules to high relative humidity was studied. Thymol (TOL) was the major constituent of TO, detected by gas chromatography before and after encapsulation. Capsules of the 8:92 ratio (TO:β-CD) showed the highest TOL content. Hydrogen bonds and hydrophobic interactions were detected between the oil constituent and β-CD by IR and 1H NMR spectroscopy. During moisture sorption, the TO capsules showed a lower water uptake compared with free β-CD. Similar behavior was observed during water desorption. In all cases, a hysteresis process was observed when comparing sorption and desorption isotherms. At high RH, TOL is displaced and almost 76% is released to the headspace. The growth of Alternaria alternata was inhibited significantly by the addition and exposure to TO:β-CD as measured by both the agar dilution and the headspace method, respectively. Therefore, the encapsulation of antifungal volatile compounds as TO in β-CD, could be an alternative to control the release of natural antimicrobials that can be of interest to the agricultural area.


Thyme oil β-cyclodextrin Capsules Controlled release Antifungal 



Thyme essential oil






Essential oils


Relative humidity




Proton nuclear magnetic resonance


Gas chromatography coupled to mass spectrometry detector


Gas chromatography coupled to flame ionization detector


High performance liquid chromatography



Special appreciation to the Mexican Council of Science and Technology (CONACYT project 6457) for financial support to carry out this research.


  1. 1.
    Ayala-Zavala, J.F., del-Toro-Sanchez, L., Alvarez-Parrilla, E., Gonzalez-Aguilar, G.A.: High relative humidity in-package of fresh-cut fruits and vegetables: advantage or disadvantage considering microbiological problems and antimicrobial delivering systems? J. Food Sci. 73, R41–R47 (2008)CrossRefGoogle Scholar
  2. 2.
    Carraminana, J.J., Rota, C., Burillo, J., Herrera, A.: Antibacterial efficiency of Spanish Satureja montana essential oil against Listeria monocytogenes among natural flora in minced pork. J. Food Prot. 71, 502–508 (2008)Google Scholar
  3. 3.
    Wang, C.: The use of essential oils as natural preservatives for berry fruits. HortScience 41, 1042–1043 (2006)Google Scholar
  4. 4.
    Ravi, R., Prakash, M., Bhat, K.K.: Aroma characterization of coriander (Coriandrum sativum L.) oil samples. Eur. Food Res. Technol. 225, 367–374 (2007)CrossRefGoogle Scholar
  5. 5.
    Zeller, A., Rychlik, M.: Impact of estragole and other odorants on the flavour of anise and tarragon. Flavour Fragr. J. 22, 105–113 (2007)CrossRefGoogle Scholar
  6. 6.
    Mukherjee, M., Datta, A.K.: The basils—a review. Plant Arch. 7, 473–483 (2007)Google Scholar
  7. 7.
    Senhaji, O., Faid, M., Kalalou, I.: Inactivation of Escherichia coli O157 : H7 by essential oil from Cinnamomum zeylanicum. Brazilian J. Infect. Dis. 11, 234–236 (2007)Google Scholar
  8. 8.
    Jugl-Chizzola, M., Ungerhofer, E., Gabler, C., Hagmuller, W., Chizzola, R., Zitterl-Eglseer, K., Franz, C.: Testing of the palatability of Thymus vulgaris L. and Origanum vulgare L. as flavouring feed additive for weaner pigs on the basis of a choice experiment. Berliner Und Munchener Tierarztliche Wochenschrift. 119, 238–243 (2006)Google Scholar
  9. 9.
    Arcila-Lozano, C.C., Loarca-Pina, G., Lecona-Uribe, S., de Mejia, E.G.: Oregano: properties, composition and biological activity. Arch. Latinoam. Nutr. 54, 100–111 (2004)Google Scholar
  10. 10.
    Novak, I., Zambori-Nemeth, E., Horvath, H., Seregely, Z., Kaffka, K.: Study of essential oil components in different Origanum species by GC and sensory analysis. Acta Alimentaria 32, 141–150 (2003)CrossRefGoogle Scholar
  11. 11.
    Edris, A.E., Farrag, E.S.: Antifungal activity of peppermint and sweet basil essential oils and their major aroma constituents on some plant pathogenic fungi from the vapor phase. Nahrung Food 47, 117–121 (2003)CrossRefGoogle Scholar
  12. 12.
    Ayala-Zavala, J.F., del-Toro-Sánchez, L., Alvarez-Parrilla, E., Soto-Valdez, H., Martín-Belloso, O., Ruiz-Cruz, S., González-Aguilar, G.A.: Natural antimicrobial agents incorporated in active packaging to preserve the quality of fresh fruits and vegetables. Stewart Postharvest Rev. 4, 1–9 (2008)CrossRefGoogle Scholar
  13. 13.
    Ayala-Zavala, J.F., Oms-Oliu, G., Odriozola-Serrano, I., Gonzalez-Aguilar, G.A., Alvarez-Parrilla, E., Martin-Belloso, O.: Bio-preservation of fresh-cut tomatoes using natural antimicrobials. Eur. Food Res. Technol. 226, 1047–1055 (2008)CrossRefGoogle Scholar
  14. 14.
    Ayala-Zavala, J.F., Soto-Valdez, H., Gonzalaz-Leon, A., Alvarez-Parrilla, E., Martin-Belloso, O., Gonzalez-Aguilar, G.A.: Microencapsulation of cinnamon leaf (Cinnamomum zeylanicum) and garlic (Allium sativum) oils in beta-cyclodextrin. J. Incl. Phen. Macrocycl. Chem. 60, 359–368 (2008)CrossRefGoogle Scholar
  15. 15.
    Fisher, K., Phillips, C.: Potential antimicrobial uses of essential oils in food: is citrus the answer? Trends Food Sci. Technol. 19, 156–164 (2008)CrossRefGoogle Scholar
  16. 16.
    Ayala-Zavala, J.F., González-Aguilar, G.A., del Toro-Sánchez, L.: Enhancing safety and aroma appealing of fresh-cut fruits and vegetables using the antimicrobial and aromatic power of essential oils. J. Food Sci. 74, R84–R91 (2009)CrossRefGoogle Scholar
  17. 17.
    Sokmen, A., Gulluce, M., Akpulat, H.A., Daferera, D., Tepe, B., Polissiou, M., Sokmen, M., Sahin, F.: The in vitro antimicrobial and antioxidant activities of the essential oils and methanol extracts of endemic Thymus spathulifolius. Food Control 15, 627–634 (2004)CrossRefGoogle Scholar
  18. 18.
    Viuda-Martos, M., Ruiz-Navajas, Y., Fernandez-Lopez, J., Perez-Alvarez, J.A.: Antifungal activities of thyme, clove and oregano essential oils. J. Food Saf. 27, 91–101 (2007)CrossRefGoogle Scholar
  19. 19.
    Hudaib, M., Aburjai, T.: Volatile components of Thymus vulgaris L. from wild-growing and cultivated plants in Jordan. Flavour Fragr. J. 22, 322–327 (2007)CrossRefGoogle Scholar
  20. 20.
    Martinez, S., Madrid, J., Hernandez, F., Megias, M.D., Sotomayor, J.A., Jordan, M.J.: Effect of thyme essential oils (Thymus hyemalis and Thymus zygis) and monensin on in vitro ruminal degradation and volatile fatty acid production. J. Agric. Food Chem. 54, 6598–6602 (2006)CrossRefGoogle Scholar
  21. 21.
    Aydin, S., Basaran, A.A., Basaran, N.: The effects of thyme volatiles on the induction of DNA damage by the heterocyclic amine IQ and mitomycin C. Mutat. Res. Genet. Toxicol. Environ. Mutag. 581, 43–53 (2005)CrossRefGoogle Scholar
  22. 22.
    Tripathi, P., Dubey, N.K.: Exploitation of natural products as an alternative strategy to control postharvest fungal rotting of fruit and vegetables. Postharvest Biol. Technol. 32, 235–245 (2003)CrossRefGoogle Scholar
  23. 23.
    Baranauskiene, R., Venskutonis, P.R., Dewettinck, K., Verhe, R.: Properties of oregano (Origanum vulgare L.), citronella (Cymbopogon nardus G.) and marjoram (Majorana hortensis L.) flavors encapsulated into milk protein-based matrices. Food Res. Int. 39, 413–425 (2006)CrossRefGoogle Scholar
  24. 24.
    Guillen, M.D., Manzanos, M.J.: Composition of the extract in dichloromethane of the aerial parts of a Spanish wild growing plant Thymus vulgaris L. Flavour Fragr. J. 13, 259–262 (1998)CrossRefGoogle Scholar
  25. 25.
    Torras, J., Grau, M.D., Lopez, J.F., de Las Heras, F.X.C.: Analysis of essential oils from chemotypes of Thymus vulgaris in Catalonia. J. Sci. Food Agric. 87, 2327–2333 (2007)CrossRefGoogle Scholar
  26. 26.
    McGimpsey, J.A., Douglas, M.H., Van Klink, J.W., Beauregard, D.A., Perry, N.B.: Seasonal variation in essential oil yield and composition from naturalized Thymus vulgaris L. in New Zealand. Flavour Fragr. J. 9, 347–352 (1994)CrossRefGoogle Scholar
  27. 27.
    Piccaglia, R., Marotti, M.: Composition of the essential oil of an italian Thymus vulgaris L. ecotype. Flavour Fragr. J. 6, 241–244 (1991)CrossRefGoogle Scholar
  28. 28.
    Moon, T.W., Lee, J.W., Jhee, K.H., Khang, K.W., Jeong, H.S., Yang, S.A., Kim, H.J.: Supramolecular encapsulation of pulegone from oriental herb, Schizonepeta tenuifolia Briquet by beta- and gamma-cyclodextrins. Bull. Korean Chem. Soc. 29, 1579–1582 (2008)Google Scholar
  29. 29.
    Locci, E., Lai, S.M., Piras, A., Marongiu, B., Lai, A.: C-13-CPMAS and H-1-NMR study of the inclusion complexes of beta-cyclodextrin with carvacrol, thymol, and eugenol prepared in supercritical carbon dioxide. Chem. Biodivers. 1, 1354–1366 (2004)CrossRefGoogle Scholar
  30. 30.
    Pose-Vilarnovo, B., Perdomo-Lopez, I., Echezarreta-Lopez, M., Schroth-Pardo, P., Estrada, E., Torres-Labandeira, J.J.: Improvement of water solubility of sulfamethizole through its complexation with beta- and hydroxypropyl-beta-cyclodextrin—Characterization of the interaction in solution and in solid state. Eur. J. Pharm. Sci. 13, 325–331 (2001)CrossRefGoogle Scholar
  31. 31.
    Fernandes, C.M., Carvalho, R.A., da Costa, S.P., Veiga, F.J.B.: Multimodal molecular encapsulation of nicardipine hydrochloride by beta-cyclodextrin, hydroxypropyl-beta-cyclodextrin and triacetyl-beta-cyclodextrin in solution. Structural studies by H-1 NMR and ROESY experiments. Eur. J. Pharm. Sci. 18, 285–296 (2003)CrossRefGoogle Scholar
  32. 32.
    Taulier, N., Chalikian, T.V.: Hydrophobic hydration in cyclodextrin complexation. J. Phys. Chem. B. 110, 12222–12224 (2006)CrossRefGoogle Scholar
  33. 33.
    Mourtzinos, I., Kalogeropoulos, N., Papadakis, S.E., Konstantinou, K., Karathanos, V.T.: Encapsulation of nutraceutical monoterpenes in beta-cyclodextrin and modified starch. J. Food Sci. 73, S89–S94 (2008)CrossRefGoogle Scholar
  34. 34.
    Ozdemir, M., Floros, J.D.: Active food packaging technologies. Crit. Rev. Food Sci. Nutr. 44, 185–193 (2004)CrossRefGoogle Scholar
  35. 35.
    Vermeiren, L., Devlieghere, F., Debevere, J.: Effectiveness of some recent antimicrobial packaging concepts. Food Addit. Contam. 19, 163–171 (2002)CrossRefGoogle Scholar
  36. 36.
    Cha, D.S., Chinnan, M.S.: Biopolymer-based antimicrobial packaging: a review. Crit. Rev. Food Sci. Nutr. 44, 223–237 (2004)CrossRefGoogle Scholar
  37. 37.
    Suppakul, P., Miltz, J., Sonneveld, K., Bigger, S.W.: Active packaging technologies with an emphasis on antimicrobial packaging and its applications. J. Food Sci. 68, 408–420 (2003)CrossRefGoogle Scholar
  38. 38.
    Tunc, S., Chollet, E., Chalier, P., Preziosi-Belloy, L., Gontard, N.: Combined effect of volatile antimicrobial agents on the growth of Penicillium notatum. Int. J. Food Microbiol. 113, 263–270 (2007)CrossRefGoogle Scholar
  39. 39.
    Montes-Belmont, R., Carvajal, M.: Control of Aspergillus flavus in maize with plant essential oils and their components. J. Food Prot. 61, 616–619 (1998)Google Scholar
  40. 40.
    Basilico, M.Z., Basilico, J.C.: Inhibitory effect of some spice essentials oils on Aspergillus ochraceus NRRL 3174 growth and ochratoxin production. Lett. Appl. Microbiol. 29, 238–241 (1999)CrossRefGoogle Scholar
  41. 41.
    Inouye, S., Tsuruoka, T., Watanabe, M., Takeo, K., Akao, M., Nishiyama, Y., Yamaguchi, H.: Inhibitory effect of essential oils on apical growth of Aspergillus fumigatus by vapour contact. Mycoses 43, 17–23 (2000)CrossRefGoogle Scholar
  42. 42.
    Daferera, D.J., Ziogas, B.N., Polissiou, M.G.: The effectiveness of plant essential oils on the growth of Botrytis cinerea, Fusarium sp and Clavibacter michiganensis subsp michiganensis. Crop Protect. 22, 39–44 (2003)CrossRefGoogle Scholar
  43. 43.
    Aggarwal, K.K., Khanuja, S.P.S., Ahmad, A., Kumar, T.R.S., Gupta, V.K., Kumar, S.: Antimicrobial activity profiles of the two enantiomers of limonene and carvone isolated from the oils of Mentha spicata and Anethum sowa. Flavour Fragr. J. 17, 59–63 (2002)CrossRefGoogle Scholar
  44. 44.
    Sharma, N., Tripathi, A.: Effects of Citrus sinensis (L.) Osbeck epicarp essential oil on growth and morphogenesis of Aspergillus niger (L.) Van Tieghem. Microbiol. Res. 163, 337–344 (2008)CrossRefGoogle Scholar
  45. 45.
    Burt, S.: Essential oils: their antibacterial properties and potential applications in foods—a review. Int. J. Food Microbiol. 94, 223–253 (2004)CrossRefGoogle Scholar
  46. 46.
    Edris, A.E.: Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: a review. Phytother. Res. 21, 308–323 (2007)CrossRefGoogle Scholar
  47. 47.
    Gutierrez, J., Barry-Ryan, C., Bourke, R.: The antimicrobial efficacy of plant essential oil combinations and interactions with food ingredients. Int. J. Food Microbiol. 124, 91–97 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • C. L. Del Toro-Sánchez
    • 1
  • J. F. Ayala-Zavala
    • 2
  • L. Machi
    • 3
  • H. Santacruz
    • 3
  • M. A. Villegas-Ochoa
    • 2
  • E. Alvarez-Parrilla
    • 4
  • G. A. González-Aguilar
    • 2
  1. 1.Centro Universitario de la CiénegaUniversidad de GuadalajaraJaliscoMexico
  2. 2.Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y DesarrolloHermosilloMexico
  3. 3.DIPMUniversidad de SonoraHermosilloMexico
  4. 4.Departamento de Ciencias Básicas, Instituto de Ciencias BiomédicasUniversidad Autónoma de Ciudad Juárez (UACJ)Ciudad JuárezMexico

Personalised recommendations