Thermodynamic studies of inclusion complex formation between alkylpyridinium chlorides and β-cyclodextrin using conductometric method

  • Hadi Beiginejad
  • Ahmad Bagheri
  • Leila Safdari Yekta
  • Z. B. Nojini
Original Article


Thermodynamics on inclusion complexation of β-cyclodextrin (β-CD) with n-alkylpyridinium chlorides (C n PC, n = 12, 14, 16) were measured by conductivity technique to evaluate the effects of chain length of C n PC and temperature. The data obtained indicate that inclusion complexes S(CD) and S(CD)2 had formed between surfactant and β-CD in aqueous solution. Investigation showed that the K 1 (first equilibrium constant) for S(CD) formation is greater than K 2 (second equilibrium constant) for S(CD)2 formation. It has been found that C12PC forms only the 1:1 complex, while C14PC and C16PC form 1:1 and 1:2 complexes. Thermodynamic parameters of the complexation, i.e. ΔG°, ΔH° and ΔS° have been also calculated. The large values of ΔG° indicate that complexation between surfactant and β-CD is very favorable.


Inclusion complex Alkylpyridinium chlorides Cyclodextrin Conductometry Thermodynamic parameters 



The authors are grateful for the financial support from the Research Councils of Malayer University.


  1. 1.
    Connors, K.A.: The stability of cyclodextrin complexes in solution. Chem. Rev. 97, 1325–1357 (1997)CrossRefGoogle Scholar
  2. 2.
    Bender, M.L., Komiyama, M.: Cyclodextrin Chemistry. Springer-Verlag, Berlin (1978)Google Scholar
  3. 3.
    Fonasaki, N., Ishikawa, S., Hirota, S.: Chemical shifts as a novel measure of interactions between two binding sites of symmetric dialkyldimethylammonium bromides to α-cyclodextrin. Anal. Chim. Acta. 555, 278–285 (2006)CrossRefGoogle Scholar
  4. 4.
    Mwakibete, H., Bloor, D.M., Wyn-Jones, E.: Determination of the complexation constants between alkylpyridinium bromide and alpha- and beta-cyclodextrins using electromotive force methods. Langmuir. 10, 3328–3331 (1994)CrossRefGoogle Scholar
  5. 5.
    Gharibi, H., Jalili, S., Rajabi, T.: Electrochemical studies of interaction between CTAB and alpha, beta, cyclodextrins at various temperature. Colloids Surf. 175, 361–369 (2000)CrossRefGoogle Scholar
  6. 6.
    Kitamura, K., Imayoshi, N.: Second-derivative spectrophotometric determination of the binding constant between chlorpromazine and β-cyclodextrin in aqueous solutions. Anal. Sci. 8, 497–503 (1992)CrossRefGoogle Scholar
  7. 7.
    Zhou, Y., Yu, H., Zhang, L., Sun, J., Wu, L., Lu, Q., Wang, L.: Host properties of cucurbit [7] uril: fluorescence enhancement of acridine orange. J. Incl. Phenom. Macrocycl. Chem. 61, 259–264 (2008)CrossRefGoogle Scholar
  8. 8.
    Buschmann, H.-J., Jansen, K., Schollmeyer, E.: Cucurbituril and α- and β-cyclodextrins as ligands for the complexation of nonionic surfactants and polyethyleneglycols in aqueous solutions. J. Incl. Phenom. Macrocycl. Chem. 37, 231–236 (2004)CrossRefGoogle Scholar
  9. 9.
    Rafati, A.A., Bagheri, A., Iloukhani, H., Zarinehzad, M.: Study of inclusion complex formation between a homologous series of n-alkyltrimethylammonium bromides and beta-cyclodextrin, using conductometric technique. J. Mol. Liq. 116, 37–41 (2005)CrossRefGoogle Scholar
  10. 10.
    Valente, A.J.M., Dinis, C.J.S., Pereira, R.F.P., Ribeiro, A.C.F., Lobo, V.M.M.: Interaction between β-cyclodextrin and some sodium alkyl sulfates and sulfonates as seen by electrical conductivity measurements. Port. Electrochem. Acta. 24, 129–136 (2006)CrossRefGoogle Scholar
  11. 11.
    Bakshi, M.S.: Mixed micelles in the presence of macrocyclic additives: a host–guest conductometric study. J. Incl. Phenom. Macrocycl. Chem. 36, 39–54 (2004)CrossRefGoogle Scholar
  12. 12.
    Rafati, A.A., Bagheri, A.: Electrochemical and thermodynamic studies of inclusion complex formation between tetradecyltrimethylammonium bromide (TTAB) and beta-cyclodextrin (beta-CD). Bull. Chem. Soc. Jpn. 77, 485–490 (2004)CrossRefGoogle Scholar
  13. 13.
    Rafati, A.A., Safatian, F.: Thermodynamic studies of inclusion complex between cetyltrimethylammonium bromide (CTAB) and -cyclodextrin (-CD) in water/n-butanol mixture, using potentiometric technique. Phys. Chem. Liq. 46, 587–598 (2008)CrossRefGoogle Scholar
  14. 14.
    Tominaga, T., Hachisu, D., Kamado, M.: Interactions between the tetradecyltrimethylammonium ion and alpha, beta, and gamma-cyclodextrin in water as studied by a surfactant-selective electrode. Langmuir. 10, 4676–4680 (1994)CrossRefGoogle Scholar
  15. 15.
    Mwakibete, H., Cristantino, R., Bloor, D.M., Wyn-Jones, E., Holzwarth, J.F.: Reliability of the experimental methods to determine equilibrium constants for surfactant/cyclodextrin inclusion complexes. Langmuir. 11, 57–60 (1995)CrossRefGoogle Scholar
  16. 16.
    Mwakibete, H., Bloor, D.M., Wyn-Jones, E.: Determination of the complexation constants between alkylpyridinium bromide and alpha- and beta-cyclodextrins using electromotive force methods. Langmuir. 10, 3328–3331 (1994)CrossRefGoogle Scholar
  17. 17.
    Jinxia, L., Zhao, C., Chao, J.: Investigation on the inclusion behavior of norfloxacin with 2-methyl-β-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 62, 325–331 (2008)CrossRefGoogle Scholar
  18. 18.
    Schneider, H.J., Hacket, F., Rudiger, V.: Cyclodextrins: introduction. Chem. Rev. 98, 1755–1785 (1998)CrossRefGoogle Scholar
  19. 19.
    Wilson, L.D., Verrall, R.E.: A volumetric study of α-cyclodextrin/hydrocarbon and α-cyclodextrin/fluorocarbon surfactant inclusion complexes in aqueous solutions. J. Phys. Chem. B 101, 9270–9279 (1997)CrossRefGoogle Scholar
  20. 20.
    Wilson, L.D., Verrall, R.E.: Volumetric study of modified β-cyclodextrin/hydrocarbon and/fluorocarbon surfactant inclusion complexes in aqueous solutions. J. Phys. Chem. B 102, 480–488 (1998)CrossRefGoogle Scholar
  21. 21.
    Rafati, A.A., Hashemianzadeh, S.M., Nojini, Z.B.: Quantum chemical study of the host–guest inclusion complexes of the local anaesthetic drugs, procaine hydrochloride and butacaine hydrochloride, with a- and b-cyclodextrins. Monatsh. Chem. 139, 763–771 (2008)Google Scholar
  22. 22.
    Rafati, A.A., Hashemianzadeh, S.M., Nojini, Z.B., Safarpour, M.A.: Theoretical study of the inclusion complexes of α and β-cyclodextrins with decyltrimethylammonium bromide (DTAB) and tetradecyltrimethylammonium bromide (TTAB). J. Mol. Liq. 135, 153–157 (2007)CrossRefGoogle Scholar
  23. 23.
    Nicely, V.A., Dye, J.L.: A general purpose curve fitting program for class and research use. J. Chem. Educ. 48, 443–447 (1971)CrossRefGoogle Scholar
  24. 24.
    Eli, W., Chen, W., Xue, Q.: The association of anionic surfactants with β-cyclodextrin. An isothermal titration calorimeter study. J. Chem. Thermodyn. 31, 1283–1296 (1999)CrossRefGoogle Scholar
  25. 25.
    Bastors, M., Briggner, L.E., Shehatta, I.: The binding of alkane-α, ω-diols to α-cyclodextrin. A microcalorimetric study. J. Chem. Thermodyn. 22, 1181–1190 (1990)CrossRefGoogle Scholar
  26. 26.
    Ikeda, T., Hirota, E., Ooya, T., Yui, N.: Thermodynamic analysis on inclusion complexation between α-cyclodextrin-based molecular tube and sodium alkyl sulfonate. Langmuir. 17, 234–238 (2001)CrossRefGoogle Scholar
  27. 27.
    Inoue, Y., Hakushi, T., Liu, Y., Tong, L.H.: Calorimetric titration of inclusion complexation with modified β-cyclodextrins. Enthalpy–entropy compensation in host-guest complexation: from ionophore to cyclodextrin and cyclophane. J. Am. Chem. Soc. 115, 475–481 (1993)CrossRefGoogle Scholar
  28. 28.
    Liu, Y., Tong, L.H., Inoue, Y., Hakushi, T.: Thermodynamics of solvent extraction of metal picrates with crown ethers: enthalpy–entropy compensation. 2. Sandwiching 1:2 complexation. J. Chem. Soc. Perkin Trans2. 7, 1247–1252 (1990)CrossRefGoogle Scholar
  29. 29.
    Liu, Y., Tong, L.H., Huang, S., Tian, B.Z., Inoue, Y., Hakushi, T.: Complexation thermodynamics of bis(crown ether)s. 4. Calorimetric titration of intramolecular sandwich complexation of thallium and sodium ions with bis(15-crown-5)s and bis(12-crown-4)s: enthalpy–entropy compensation. J. Phys. Chem. 94, 2666–2670 (1990)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Hadi Beiginejad
    • 1
  • Ahmad Bagheri
    • 2
  • Leila Safdari Yekta
    • 1
  • Z. B. Nojini
    • 3
  1. 1.Department of ChemistryMalayer UniversityMalayerIran
  2. 2.Faculty of ChemistryBu-Ali Sina UniversityHamedanIran
  3. 3.Department of Chemistry, Faculty of ScienceShahid Chamran UniversityAhwazIran

Personalised recommendations