Advertisement

Complexation of metal ions with the novel diazadithia crown ether carrying two anthryl pendants in acetonitrile–tetrahydrofuran

  • Semanur Parlayan
  • Aysel Başoğlu
  • Miraç Ocak
  • Hakan Alp
  • Halit Kantekin
  • Ümmühan Ocak
Original Article
  • 104 Downloads

Abstract

A new crown ether carrying two anthryl groups with nitrogen–sulfur donor atom was designed and synthesized by the reaction of the corresponding macrocyclic compound and 9-chloromethyl anthracene. The influence of metal cations such as Al3+, Zn2+, Fe2+, Fe3+, Co2+, Ni2+, Mn2+, Cu2+, Cd2+, Hg2+ and Pb2+ on the spectroscopic properties of the ligand was investigated in acetonitrile–tetrahydofuran solution (1/1) by means of absorption and emission spectrometry. Absorption spectra show isosbestic points in the spectrophotometric titration of Fe2+, Fe3+, Al3+, Cu2+ and Hg2+. The results of spectrophotometric titration experiments disclosed the complexation stoichiometry and complex stability constant of the novel ligand with Fe2+, Fe3+, Al3+, Cu2+and Hg2+cations. The presence of excess amounts of Al3+, Zn2+, Fe2+, Fe3+, Co2+, Ni2+, Mn2+, Cu2+, Cd2+, Hg2+ and Pb2+ cations caused an enhancement of anthryl fluorescence. The ligand showed good sensitivity for Zn2+ with respect to other metal cations with linear range and detection limit of 1.4 × 10−7 to 4.1 × 10−6 M and 1.0 × 10−8 M respectively.

Keywords

Crown ether 9-chloromethyl anthracene Fluorescence spectroscopy Stability constant Metal cation 

Notes

Acknowledgment

This work was supported by The Scientific and Technological Research Council of Turkey (TUBITAK).

References

  1. 1.
    Ropek, D., Para, A.: The effect of heavy metal ions and their complexions upon growth, sporulation and pathogenicity of the entomopathogenic fungus paecilomyces farinosus. Polish J. Environ. Stud. 12, 227–230 (2003)Google Scholar
  2. 2.
    Tudor, M.J., Tudor, M., David, C., Teodorof, L., Tudor, D., Ibram, O.: Chemicals as intentional and accidental global environmental threats. Springer, Netherlands (2006)Google Scholar
  3. 3.
    Pawlik-Skowronska, B.: Correlations between toxic Pb effects and production of Pb-induced thiol peptides in the microalga Stichococcus bacillaris. Environ. Pollut. 119, 119–127 (2002)CrossRefGoogle Scholar
  4. 4.
    Vosyliene, M.Z., Jankaite, A.: Effect of heavy metal model mixture on rainbow trout biological parameters. Ekologija 4, 12–17 (2006)Google Scholar
  5. 5.
    Shah, S.L., Altındağ, A.: Effects of heavy metal accumulation on the 96-h LC50 values in Tench Tinca tinca L.1758. Turk. J. Vet. Anim. Sci. 29, 139–144 (2005)Google Scholar
  6. 6.
    Ansari, T.M., Marr, I.L., Tariq, N.: Heavy metals in marine pollution perspective-A mini review. J. Appl. Sci. 4(1), 1–20 (2004)CrossRefGoogle Scholar
  7. 7.
    Goodman, W.G.: Pathophysiologic mechanisms of aluminum toxicity aluminum-induced bone disease. In: de Broe, M.E., Coburn, J.W. (eds.) Aluminum and Renal Failure. Kluwer Academic Publishers, Dordrecht, Boston, London (1990)Google Scholar
  8. 8.
    Rogers, M.A., Simon, D.G.: A preliminary study of dietary aluminum intake and risk of Alzheimer disease. Age Ageing 28, 205–209 (1999)CrossRefGoogle Scholar
  9. 9.
    Nagasawa, K., Akagi, J., Koma, M., Kakuda, T., Nagai, K., Shimohama, S., Fujimoto, S.: Transport and toxic mechanism for aluminum citrate in human neuroblastoma SH-SY5Y cells. Life Sci. 79, 89–97 (2006)CrossRefGoogle Scholar
  10. 10.
    Thompson, R.B., Peterson, D., Mahoney, W., Cramer, M., Maliwal, B.P., Suh, S.W., Frederickson, C., Fierke, C., Herman, P.: Fluorescent zinc indicators for neurobiology. J. Neurosci. Methods 118, 63–75 (2002)CrossRefGoogle Scholar
  11. 11.
    Shay, N.F., Mangian, H.F.: Neurobiology of zinc-influenced eating behavior. J. Nutr. 130, 1493S–1499S (2000)Google Scholar
  12. 12.
    Yang, D.Y., Lee, J.B., Lin, M.C., Huang, Y.L., Liu, H.W., Liang, Y.J., Cheng, F.C.: The determination of brain magnesium and zinc levels by a dual-probe microdialysis and graphite furnace atomic absorption spectrometry. J. Am. Coll. Nutr. 23(5), 552S–555S (2004)Google Scholar
  13. 13.
    Garcia, E.A., Gomis, D.B.: Sequential extraction spectrofluorimetric determination of ultratraces of zinc using cryptand 2.2.1 and eosin. Mikrochim. Acta 124, 179–185 (1996)Google Scholar
  14. 14.
    Shemirani, F., Rajabi, M., Asghari, A., Milani-Hosseini, M.R.: Simultaneous determination of traces of cadmium and zinc by adsorptive stripping voltammetry. Can. J. Anal. Sci. Spectrosc. 50(4), 176–181 (2005)Google Scholar
  15. 15.
    Reza, G., Khaniki, J.: Determination of zinc contents in Iranian flat breads. Pak. J. Nutr. 4(5), 294–297 (2005)CrossRefGoogle Scholar
  16. 16.
    Andac, M., Asan, A., Tınkılıç, N., Işildak, I.: A simple flow-injection spectrofluorimetric method for the determination of mercury. J. Fluoresc. 17, 401–405 (2007)Google Scholar
  17. 17.
    Xiang, Y., Mei, L., Li, N., Tong, A.: Sensitive and selective spectrofluorimetric determination of chromium(VI) in water by fluorescence enhancement. Anal. Chim. Acta 581, 132–136 (2007)CrossRefGoogle Scholar
  18. 18.
    Liao, W.S., Wu, F.Y., Wu, Y.M., Wang, X.J.: Highly sensitive spectrofluorimetric determination of cysteine by Cu2+-morin comple. Microchim. Acta 162, 147–152 (2008)CrossRefGoogle Scholar
  19. 19.
    Valeur, B., Leray, I.: Desing principles of fluorescent molecular sensors for cation recognition. Coord. Chem. Rev. 205, 3–40 (2000)CrossRefGoogle Scholar
  20. 20.
    Izatt, R.M., Pawlak, K., Bradshaw, J.S., Bruening, R.L.: Thermodynamic and kinetic data for macrocycle interaction cations, anions and neutral molecules. Chem. Rev. 95, 2529–2586 (1995)CrossRefGoogle Scholar
  21. 21.
    Talanova, G.G., Roper, E.D., Buie, N.M., Gorbunova, M.G., Bartsch, R.A., Talanov, V.S.: Novel fluorogenic calix[4]arene-bis(crown-6-ether) for selective recognition of thallium(I). Chem. Commun., 5673–5675 (2005)Google Scholar
  22. 22.
    Gokel, G.W., Leevy, W.M., Weber, M.E.: Crown ethers: sensors for ions and molecular scaffolds for materials and biological models. Chem. Rev. 104(5), 2723–2750 (2004)CrossRefGoogle Scholar
  23. 23.
    Veggel, F.C.J.M., Verboom, W., Reinhoudt, D.N.: Metallomacrocycles: supramolecular chemistry with hard and soft metal cations in action. Chem. Rev. 94(2), 279–299 (1994)CrossRefGoogle Scholar
  24. 24.
    Hancock, R.D., Martell, A.E.: Ligand design for selective complexation of metal ions in aqueous solution. Chem. Rev. 89(8), 1875–1914 (1989)CrossRefGoogle Scholar
  25. 25.
    Xu, X., Xu, H., Ji, H.F.: New fluorescent probes for the detection of mixed sodium and potassium metal ions. Chem. Commun., 2092–2093 (2001)Google Scholar
  26. 26.
    Chang, J.H., Choi, Y.M., Shin, Y.K.: A significant fluorescence quenching of anthrylaminobenzocrown ethers by paramagnetic metal cations. Bull. Korean Chem. Soc. 22(5), 527–530 (2001)Google Scholar
  27. 27.
    Ji, H.F., Dabestani, R., Hettich, R.L., Brown, G.M.: Optical sensing of cesium using 1, 3-alternate calix[4]-mono-and di(anthrylmethyl)aza-crown-6. Photochem. Photobiol. 70(6), 882–886 (1999)CrossRefGoogle Scholar
  28. 28.
    Silva, A.P., Silva, S. A.: Fluorescent signaling crown ether; Swiching on of fluorescence by alkali metal ion recognition and binding in situ. Chem. Commun., 1709–1710 (1986)Google Scholar
  29. 29.
    Ostaszewski, R., Bozek, A., Palys, M., Stojek, Z.: Complexation properties of anthracene-bridged bis-crown ethers. J. Chem. Soc., Perkin Trans. 2, 1193–1198 (1999)Google Scholar
  30. 30.
    Ostaszewski, R., Prody, L., Montalti, M.: The synthesis and complexation studies of thia-anthracene receptors. Tetrahedron 55, 11553–11562 (1999)CrossRefGoogle Scholar
  31. 31.
    Bourson, J., Valeur, B.: Ion-responsive fluorescent compounds. Cation-steered intramolecular charge transfer in a crowned merocyanine. J. Phys. Chem. 93, 3871–3876 (1989)CrossRefGoogle Scholar
  32. 32.
    Martin, J.W.L., Organ, G.J., Wainwright, K.P., Weerasuria, K.D.V., Willis, A.C., Wild, S.B.: Copper(I) complexes of 14- and 16-membered chelating macrocycles with trans-disposed pairs of imine-N and thioether-S donors: Crystal and molecular structures of [Cu(C18H18N2S2)]CF3SO3 and [Cu(C20H22N2S2)]CF3SO3. Inorg. Chem. 26, 2963–2968 (1997)CrossRefGoogle Scholar
  33. 33.
    Khin, C., Lim, M.D., Tsuge, K., Iretskii, A., Wu, G., Ford, P.C.: Amine nitrosation via NO reduction of the polyamine copper(II) complex Cu(DAC)2+. Inorg. Chem. 46(22), 9323–9331 (2007)CrossRefGoogle Scholar
  34. 34.
    Sung, K., Fu, H.K., Hong, S.H.: A Fe3+/Hg2+-selective antharecene-based fluorescent PET sensor with tridentate ionophore of amide/β-amino alcohol. J. Fluoresc. 17, 383–389 (2007)CrossRefGoogle Scholar
  35. 35.
    Kubo, K., Ishige, R., Sakurai, T.: Complexation and fluorescence behavior of diazacrown ether carrying two anthryl pendants. Talanta 49, 339–344 (1999)CrossRefGoogle Scholar
  36. 36.
    Seo, H.S., Karim, M.M., Lee, S.H.: Selective fluorimetric recognition of cesium ion by 15-crown-anthracene. J. Fluoresc. 18, 853–857 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Semanur Parlayan
    • 1
  • Aysel Başoğlu
    • 2
  • Miraç Ocak
    • 1
  • Hakan Alp
    • 3
  • Halit Kantekin
    • 1
  • Ümmühan Ocak
    • 1
  1. 1.Department of Chemistry, Faculty of Arts and SciencesKaradeniz Technical UniversityTrabzonTurkey
  2. 2.Bayburt University, Vocational SchoolBayburtTurkey
  3. 3.Karadeniz Technical University, Maçka Vocational SchoolMaçka, TrabzonTurkey

Personalised recommendations