Hydrogen production by aqueous phase reforming of sorbitol using bimetallic Ni–Pt catalysts: metal support interaction

  • A. Tanksale
  • C. H. Zhou
  • J. N. Beltramini
  • G. Q. Lu
Original Article


Hydrogen was produced by Aqueous Phase Reforming (APR) of 10% (w/w) sorbitol using mono- and bi-metallic catalysts of Ni and Pt supported on alumina nano-fibre (Alnf), mesoporous ZrO2 and mixed oxides of ceria–zirconia–silica (CZxS) with varying concentration of silica (where x is silica concentration). X-ray diffraction, TEM/EDS and temperature programmed reduction were also carried on these catalysts to study the surface properties. It was observed that co-impregnation of Pt and Ni in atomic ratio 1:12 increased the reducibility of Ni by forming an alloy. However, sequential impregnation of Ni followed by Pt does not form the bi-metallic particles to increase the Ni reducibility. Reduction peak of co-impregnated Ni–Pt/Alnf was found to be 270 °C lower than the sequentially impregnated Pt/Ni/Alnf. The presence of silica at high concentration in CZxS support decreased the reducibility of ceria by forming an amorphous layer on CexZr1−xO2 crystals, which also decreased Ni reducibility. The rate of H2 formation from aqueous phase sorbitol reforming was found to be highest for co-impregnated Ni–Pt catalysts followed by sequentially impregnated Pt/Ni and monometallic Ni catalyst. The H2 activity decreased in the following order of the supports: Alnf > ZrO2 > CZ3S > CZ7S.


Bimetallic Ni–Pt catalyst Aqueous phase sorbitol reforming TPR 



The authors acknowledge funding and in-kind support from the ARC Centre of Excellence for Functional Nanomaterials, University of Queensland, Australia.


  1. 1.
    Cortright, R.D., Davda, R.R., Dumesic, J.A.: Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature 418, 964–967 (2002)CrossRefGoogle Scholar
  2. 2.
    Huber, G.W., Shabaker, J.W., Evans, S.T., Dumesic, J.A.: Aqueous-phase reforming of ethylene glycol over supported Pt and Pd bimetallic catalysts. Appl. Catal. B 62, 226–235 (2006)CrossRefGoogle Scholar
  3. 3.
    Shabaker, J.W., Davda, R.R., Huber, G.W., Cortright, R.D., Dumesic, J.A.: Aqueous-phase reforming of methanol and ethylene glycol over alumina-supported platinum catalysts. J. Catal. 215, 344–352 (2003)CrossRefGoogle Scholar
  4. 4.
    Tanksale, A., Beltramini, J.N., Lu, G.Q.: Reaction mechanisms for renewable hydrogen from liquid phase reforming of sugar compounds. Dev. Chem. Eng. Min. Process. 14, 9–18 (2006)Google Scholar
  5. 5.
    Tanksale, A., Wong, Y., Beltramini, J.N., Lu, G.Q.: Effect of promoter on mesoporous supports for increased H2 production from sugar reforming, pp. 540–543. Proceedings of the International Conference on Nanoscience and Nanotechnology, IEEE, Brisbane, 3–7 July 2006Google Scholar
  6. 6.
    Tanksale, A., Wong, Y., Beltramini, J.N., Lu, G.Q.: Hydrogen generation from liquid phase catalytic reforming of sugar solutions using metal-supported catalysts. Int. J. Hydrogen Energy 32, 717–724 (2007)CrossRefGoogle Scholar
  7. 7.
    Tanksale, A., Beltramini, J.N., Dumesic, J.A., Lu, G.Q.: Effect of Pt and Pd promoter on Ni supported catalysts: a TPR/TPO/TPD and microcalorimetry study. J. Catal. 258, 366–377 (2008)CrossRefGoogle Scholar
  8. 8.
    Rynkowski, J.M., Paryjczak, T., Lenik, M.: On the nature of oxidic nickel phases in NiO/γ-Al2O3 catalysts. Appl. Catal. A 106, 73–82 (1993)CrossRefGoogle Scholar
  9. 9.
    Shu, Y., Murillo, L.E., Bosco, J.P., Huang, W., Frenkel, A.I., Chen, J.G.: The effect of impregnation sequence on the hydrogenation activity and selectivity of supported Pt/Ni bimetallic catalysts. Appl. Catal. A 339, 169–179 (2008)CrossRefGoogle Scholar
  10. 10.
    Arishtirova, K., Pawelec, B., Nikolov, R.N., Fierro, J.L.G., Damyanova, S.: Promoting effect of Pt in Ni-based catalysts for CH4 reforming. React. Kinet. Catal. L 91, 241–248 (2007)CrossRefGoogle Scholar
  11. 11.
    Baker, R.T.K., Dumesic, J.A., Chludzinski Jr., J.J.: The effect of various bimetallics on the graphite-steam reaction. J. Catal. 101, 169–177 (1986)CrossRefGoogle Scholar
  12. 12.
    Caglayan, B.S., Avci, A.K., Oensan, Z.I., Aksoylu, A.E.: Production of hydrogen over bimetallic Pt–Ni/d-Al2O3. Appl. Catal. A 280, 181–188 (2005)CrossRefGoogle Scholar
  13. 13.
    Dominguez E, J.M., Vazquez S, A., Renouprez, A.J., Yacaman, M.J.: On the structure and selectivity of graphite-supported platinum–nickel alloys. J Catal. 75, 101–111 (1982)CrossRefGoogle Scholar
  14. 14.
    Rynkowski, J.M., Paryjczak, T., Lenik, M.: Characterization of alumina supported nickel-ruthenium systems. Appl. Catal. A 126, 257–271 (1995)CrossRefGoogle Scholar
  15. 15.
    Rynkowski, J.M., Paryjczak, T., Lenik, M., Farbotko, M., Goralski, J.: Temperature-programmed reduction of alumina-supported Ni-Pt systems. J. Chem. Soc. Faraday Trans. 91, 3481–3484 (1995)CrossRefGoogle Scholar
  16. 16.
    Wielers, A.F.H., Dings, M.M.M., Van der Grift, C.J.G., Geus, J.W.: The preparation of silica-supported platinum-nickel alloys by controlled surface reactions. Appl. Catal. 24, 299–313 (1986)CrossRefGoogle Scholar
  17. 17.
    Boaro, M., Trovarelli, A., De Leitenburg, C., Dolcetti, G.: Catalysis by ceria and related materials. In: Hutchings, G.J. (ed.) Catalytic Science Series, vol. 2, pp. 483–500. Imperial College Press, London (2002)Google Scholar
  18. 18.
    Fernandez-Garcia, M., Martinez-Arias, A., Iglesias-Juez, A., Hungria, A.B., Anderson, J.A., Conesa, J.C., Soria, J.: New Pd/CexZr1-xO2/Al2O3 three-way catalysts prepared by microemulsion. Part 1. Characterization and catalytic behavior for CO oxidation. Appl. Catal. B 31, 39–50 (2001)CrossRefGoogle Scholar
  19. 19.
    Martinez-Arias, A., Fernandez-Garcia, M., Iglesias-Juez, A., Hungria, A.B., Anderson, J.A., Conesa, J.C., Soria, J.: New Pd/CexZr1-xO2/Al2O3 three-way catalysts prepared by microemulsion. Part 2. In situ analysis of CO oxidation and NO reduction under stoichiometric CO + NO + O2. Appl. Catal. B 31, 51–60 (2001)CrossRefGoogle Scholar
  20. 20.
    Srinivas, D., Satyanarayana, C.V.V., Potdar, H.S., Ratnasamy, P.: Structural studies on NiO–CeO2–ZrO2 catalysts for steam reforming of ethanol. Appl. Catal. A 246, 323–334 (2003)CrossRefGoogle Scholar
  21. 21.
    Martinez-Arias, A., Fernandez-Garcia, M., Belver, C., Conesa, J.C., Soria, J.: EPR study on oxygen handling properties of ceria, zirconia and Zr–Ce (1:1) mixed oxide samples. Catal. Lett. 65, 197–204 (2000)CrossRefGoogle Scholar
  22. 22.
    Turlier, P., Praliaud, H., Moral, P., Martin, G.A., Dalmon, J.A.: Influence of the nature of the support on the reducibility and catalytic properties of nickel: evidence for a new type of metal support interaction. Appl. Catal. 19, 287–300 (1985)CrossRefGoogle Scholar
  23. 23.
    Hungria, A.B., Fernandez-Garcia, M., Anderson, J.A., Martinez-Arias, A.: The effect of Ni in Pd–Ni/(Ce,Zr)Ox/Al2O3 catalysts used for stoichiometric CO and NO elimination. Part 2: Catalytic activity and in situ spectroscopic studies. J. Catal. 235, 262–271 (2005)CrossRefGoogle Scholar
  24. 24.
    Rocchini, E., Vicario, M., Llorca, J., de Leitenburg, C., Dolcetti, G., Trovarelli, A.: Reduction and oxygen storage behavior of noble metals supported on silica-doped ceria. J. Catal. 211, 407–421 (2002)Google Scholar
  25. 25.
    Reddy, B.M., Saikia, P., Bharali, P., Katta, L., Thrimurthulu, G.: Highly dispersed ceria and ceria–zirconia nanocomposites over silica surface for catalytic applications. Catal. Today 141, 109–114 (2008)CrossRefGoogle Scholar
  26. 26.
    Schulz, H., Stark, W.J., Maciejewski, M., Pratsinis, S.E., Baiker, A.: Flame-made nanocrystalline ceria/zirconia doped with alumina or silica: structural properties and enhanced oxygen exchange capacity. J. Mater. Chem. 13, 2979–2984 (2003)CrossRefGoogle Scholar
  27. 27.
    Jentys, A., McHugh, B.J., Haller, G.L., Lercher, J.A.: Temperature-programmed reduction of silica-supported platinum/nickel catalysts studied by XANES. J. Phys. Chem. 96, 1324–1328 (1992)CrossRefGoogle Scholar
  28. 28.
    Biswas, P., Kunzru, D.: Steam reforming of ethanol for production of hydrogen over Ni/CeO2–ZrO2 catalyst: Effect of support and metal loading. Int. J. Hydrogen Energy 32, 969–980 (2007)CrossRefGoogle Scholar
  29. 29.
    Trovarelli, A., Zamar, F., Llorca, J., De Leitenburg, C., Dolcetti, G., Kiss, J.T.: Nanophase fluorite-structured CeO2–ZrO2 catalysts prepared by high-energy mechanical milling. Analysis of low-temperature redox activity and oxygen storage capacity. J. Catal. 169, 490–502 (1997)CrossRefGoogle Scholar
  30. 30.
    Kumar, P., Sun, Y., Idem, R.O.: Nickel-based ceria, zirconia, and ceria-zirconia catalytic systems for low-temperature carbon dioxide reforming of methane. Energy Fuels 21, 3113–3123 (2007)CrossRefGoogle Scholar
  31. 31.
    Roh, H.-S., Jun, K.-W., Dong, W.-S., Chang, J.-S., Park, S.-E., Joe, Y.-I.: Highly active and stable Ni/Ce–ZrO2 catalyst for H2 production from methane. J. Mol. Catal. A 181, 137–142 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • A. Tanksale
    • 1
  • C. H. Zhou
    • 2
  • J. N. Beltramini
    • 1
  • G. Q. Lu
    • 1
  1. 1.ARC Centre of Excellence for Functional NanomaterialsUniversity of QueenslandBrisbaneAustralia
  2. 2.Institute of Catalytic Materials, College of Chemical Engineering and Materials ScienceZhejiang University of TechnologyZhejiangPeople’s Republic of China

Personalised recommendations