Skip to main content
Log in

Encapsulation of cyclodextrin complexed simvastatin in chitosan nanocarriers: A novel technique for oral delivery

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

The purpose of the present work was to design and investigate the potential of novel hydroxylpropyl-beta-cyclodextrin (HP-β-CD) and chitosan nanocarriers (NCs) for effective delivery of model, poorly water soluble drug simvastatin. The prepared system was characterized for particle size, particle size distribution (PDI), zeta potential, differential scanning calorimetery, x-ray diffraction, encapsulation efficiency and drug release studies. The results revealed that among the selected ratios of tripolyphosphate/chitosan, ratio 1:4 and 1:5 proved to be optimum in terms of particle size, particle distribution and drug release profile. The average size of nanoparticles increased from 516 to 617 and 464 to 562 nm for ratio 1:4 and 1:5 with increase in drug/HP-β-CD amount. To assess interactions and whether the simvastatin was incorporated in the NCs in its crystalline or amorphous form DSC and XRD were performed. These results suggest that the encapsulation process produces a marked decrease in crystallinity of simvastatin and/or confers to a nearly amorphous state of drug in NCs. Results reveled that with increase in the amount of HP-β-CD/drug the final loading of the NCs increased due to increased solubilization of simvastatin in the presence of HP-β-CD. The in vitro release profile of prepared NCs showed initial fast release (burst effect) followed by a delayed release pattern. In conclusion, these nanocarriers constitute a novel and efficient system for encapsulation and oral delivery of poorly soluble drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Radtke, M.: Nanopure TM: pure drug nanoparticles for the formulation of poorly soluble drugs. New Drugs 3, 62–68 (2001)

    Google Scholar 

  2. Muller, R.H., Bohm, B.H.L.: Nanosuspensions. In: Muller, R.H., Bentia, S., Bohm, B.H.L. (eds.) Emulsions & nanosuspensions for the formulation of poorly soluble drugs, pp. 149–174. Medpharm Scientific Publishers, Stuttgart, Germany (1998)

    Google Scholar 

  3. Muller, R.H., Jacobs, C., Kayser, O.: Nanosuspensions as particulate drug formulations in therapy: rationale for development and what we can expect for the future. Adv. Drug Deliv. Rev. 47(1), 3–19 (2001)

    Article  CAS  Google Scholar 

  4. Liversidge, E.M., Liversidge, G.G., Cooper, E.R.: Nanosizing: a formulation approach for poorly water-soluble compounds. Eur. J. Pharm. Sci. 18(2), 113–120 (2003)

    Article  Google Scholar 

  5. Rabinow, B.E.: Nanosuspensions in drug delivery. Nat. Rev. Drug Discov. 3(9), 785–796 (2004)

    Article  CAS  Google Scholar 

  6. Patravale, V.B., Date, A.A., Kulkarni, R.M.: Nanosuspensions: a promising drug delivery strategy. J. Pharm. Pharmacol. 56(7), 827–840 (2004)

    Article  CAS  Google Scholar 

  7. Gref, R., Minamitake, Y., Perracchia, M.T., Trubeskoy, V., Torchilin, V., Langer, R.: Biodegradable long-circulating polymeric nanospheres. Science 263, 1600–1603 (1994)

    Article  CAS  Google Scholar 

  8. Florence, A.T., Hillery, A.M., Hussain, N., Jani, P.U.: Nanoparticles as carriers for oral peptide absorption: studies on particle uptake and fate. J. Control. Release 36, 39–46 (1995)

    Article  CAS  Google Scholar 

  9. Allemann, E., Gurny, R., Deolker, E.: Drug loaded nanoparticles: preparation methods and drug targeting issues. Eur. J. Pharm. Biopharm. 39, 173–191 (1993)

    CAS  Google Scholar 

  10. Tiyaboonchai, W.: Chitosan nanoparticles: a promising system for drug delivery. Naresuan Univ. J. 11(3), 51–66 (2003)

    Google Scholar 

  11. Aspden, T.J., Mason, J.D., Jones, N.S.: Chitosan as a nasal delivery system: the effect of chitosan solutions on in vitro and in vivo mucociliary transport rates in human turbinates and volunteers. J. Pharm. Sci. 86, 509–513 (1997)

    Article  CAS  Google Scholar 

  12. Lehr, C.M., Bouwstra, J.A., Schacht, E., Junginger, H.E.: In vitro evaluation of mucoadhesive properties of chitosan and some other natural polymers. Int. J. Pharm. 78, 43–48 (1992)

    Article  CAS  Google Scholar 

  13. Dumitriu, S., Chornet, E.: Inclusion and release of proteins from polysaccharide-based polyion complexes. Adv. Drug Deliv. Rev. 31, 223–246 (1998)

    Article  CAS  Google Scholar 

  14. Takeuchi, H., Yamamoto, H., Niwa, T., Hino, T., Kawashima, Y.: Enteral absorption of insulin in rats from mucoadhesive chitosan-coated liposomes. Pharm. Res. 13, 896–901 (1996)

    Article  CAS  Google Scholar 

  15. Janes, K.A., Calvo, P., Alonso, M.J.: Polysaccharide colloidal particles as delivery systems for macromolecules. Adv. Drug Deliv. Rev. 47, 83–97 (2001)

    Article  CAS  Google Scholar 

  16. Bhumkar, D.R., Pokharkar, V.B.: Studies on effect of PH on cross-linking of chitosan with sodium tripolyphosphate: a technical note. AAPS PharmSciTech. 7(2), E1–E6 (2006)

    Article  Google Scholar 

  17. Aral, C., Akbug˘ a, J.: Alternative approach to the preparation of chitosan beads. Int. J. Pharm. 168, 9–15 (1998)

    Article  CAS  Google Scholar 

  18. Mi, F.L., Shyu, S.S., Chen, C.T., Schoung, J.Y.: Porous chitosan microsphere for controlling the antigen release of Newcastle disease vaccine: preparation of antigen-adsorbed microsphere and in vitro release. Biomaterials 20, 1603–1612 (1999)

    Article  CAS  Google Scholar 

  19. Shu, X.Z., Zhu, K.J.: A novel approach to prepare tripolyphosphate/chitosan complex beads for controlled drug delivery. Int. J. Pharm. 201, 51–58 (2000)

    Article  CAS  Google Scholar 

  20. Ducheˆ ne, D., Ponchel, G., Wouassindjewe, D.: Cyclodextrins in targeting- Application to nanoparticles. Adv. Drug Deliv. Rev. 36(1), 29–40 (1999)

    Article  Google Scholar 

  21. Vyas, A., Saraf, S., Saraf, S.: Cyclodextrin based novel drug delivery systems. J. Incl. Phenom. Macrocycl. Chem. 62(1–2), 23–42 (2008)

    Article  CAS  Google Scholar 

  22. Higuchi, T., Connors, K.A.: Phase-solubility techniques. Adv. Anal. Chem. Instrum. 4, 117–212 (1965)

    CAS  Google Scholar 

  23. Brewster, M.E., Loftsson, T.: Cyclodextrins as pharmaceutical solubilizers. Adv. Drug Deliv. Rev. 59, 645–666 (2007)

    Article  CAS  Google Scholar 

  24. Shu, X.Z., Zhu, K.J.: Chitosan/gelatin microspheres prepared by modified emulsification and ionotropic gelation. J. Microencapsul. 18, 237–245 (2001)

    Article  CAS  Google Scholar 

  25. Calvo, P., Remun˜a′n-Lo′ pez, C., Vila-Jato, J.L., Alonso, M.J.: Novel hydrophilic chitosan–polyethylene oxide nanoparticles as protein carriers. J. Appl. Polym. Sci. 63, 125–132 (1997)

    Article  CAS  Google Scholar 

  26. Calvo, P., Vila-Jato, J.L., Alonso, M.J.: Evaluation of cationic polymer-coated nanocapsules as ocular drug carriers. Int. J. Pharm. 153, 41–50 (1997)

    Article  CAS  Google Scholar 

  27. Bodmeier, R., Chen, H., Paeratakul, O.: A novel approach to the oral delivery of micro- or nanoparticles. Pharm. Res. 6, 413–417 (1989)

    Article  CAS  Google Scholar 

  28. Ambike, A.A., Mahadik, K.R., Paradkar, A.: Spray-dried amorphous solid dispersions of simvastatin a low Tg drug: in vitro and in vivo evaluations. Pharm. Res. 22, 990–998 (2005)

    Article  CAS  Google Scholar 

  29. Kang, B.K., Lee, J.S., Chon, S.K., Jeong, S.Y., Yuk, S.H., Khang, G., Lee, H.B., Cho, S.H.: Development of self-microemulsifying drug delivery systems (SMEDDS) for oral bioavailability enhancement of simvastatin in beagle dogs. Int. J. Pharm. 274, 65–73 (2004)

    Article  CAS  Google Scholar 

  30. Rajput, S.J., Raj, H.A.: Simultaneous spectroscopic estimation of ezetimibe and simvastatin in tablet dosage forms. Indian J. Pharm. Sci. 69, 759–762 (2007)

    Article  CAS  Google Scholar 

  31. Arayne, M.S., Sultana, N., Hussain, F., Ali, S.A.: Validated spectrophotometric method for quantitative determination of simvastatinin pharmaceutical formulations and human serum. J. Anal. Chem. 62, 536–541 (2007)

    Article  CAS  Google Scholar 

  32. Bhatia, N.M., Deshmukh, D.D., Kokil, S.U., Bhatia, M.S.: (2009) Simultaneous spectrophotometric estimation of simvastatin and ezetimibe in tablet formulation. J. Chem. 6(2), 541–544. http://www.e-journals.in/

    Google Scholar 

  33. Zerrouk, N., Corti, G., Ancillotti, S., Maestrelli, F., Cirri, M., Mura, P.: Influence of cyclodextrins and chitosan, separately or in combination, on glyburide solubility and permeability. Eur. J. Pharm. Biopharm. 62, 241–246 (2006)

    Article  CAS  Google Scholar 

  34. Maestrelli, F., Garcia-Fuentes, M., Mura, P., Jose′ Alonso, M.: A new drug nanocarrier consisting of chitosan and hydoxypropylcyclodextrin. Eur. J. Pharm. Biopharm. 63, 79–86 (2006)

    Article  CAS  Google Scholar 

  35. Patel, A.R., Vavia, P.R.: Effect of hydrophilic polymer on solubilization of fenofibrate by cyclodextrin complexation. J. Incl. Phenom. Macrocycl. Chem. 56, 247–251 (2006)

    Article  CAS  Google Scholar 

  36. Chowdary, K.P.R., Srinivas, S.V. Influence of hydrophilic polymers on celecoxib complexation with hydroxypropyl β-cyclodextrin. AAPS PharmSciTech. 7(3), E-1–E-6 (2006)

  37. Bibby, D.C., Davies, N.M., Tucker, I.G.: Mechanisms by which cyclodextrins modify drug release from polymeric drug delivery systems. Int. J. Pharm. 197, 1–11 (2000)

    Article  CAS  Google Scholar 

  38. Loftsson, T., Frioriksdottir, H., Siguroardottir, A.M., Ueda, H.: The effect of water-soluble polymers on drug–cyclodextrin complexation. Int. J. Pharm. 110, 169–177 (1994)

    Article  CAS  Google Scholar 

  39. Ammar, H.O., Salama, H.A., Ghorab, M., Mahmoud, A.A.: Formulation and biological evaluation of glimepiride–cyclodextrin–polymer systems. Int. J. Pharm. 309, 129–138 (2006)

    Article  CAS  Google Scholar 

  40. Pan, Y., Li, Y.J., Zhao, H.Y., Zheng, J.M., Xu, H., Wei, G., et al.: Int. J. Pharm. 349, 139–147 (2002)

    Article  Google Scholar 

  41. Papadimitriou, S., Bikiaris, D., Avgoustakis, K., Karavas, E., Georgarakis, M.: Chitosan nanoparticles loaded with dorzolamide and pramipexole. Carbohydr. Polym. 73, 44–54 (2008)

    Article  CAS  Google Scholar 

  42. Zhang, H., Oh, M., Allen, C., Kumacheva, E.: Monodisperse chitosan nanoparticles for mucosal drug delivery. Biomacromolecules 5(6), 2461–2468 (2004)

    Article  CAS  Google Scholar 

  43. Fernandez-Urrusuno, R., Calvo, P., Remunan-Lopez, C., Vila-Jato, J.L., Alonso, M.J.: Enhancement of nasal absorption of insulin using chitosan Nanoparticles. Pharm. Res. 16, 1576–1581 (1999)

    Article  CAS  Google Scholar 

  44. Kim, D.G., Jeong, Y.I., Choi, C., Roh, S.H., Kang, S.K., Jang, M.K., Nah, J.W.: Retinol-encapsulated low molecular water-soluble chitosan nanoparticles. Int. J. Pharm. 319, 130–138 (2006)

    Article  CAS  Google Scholar 

  45. Dhawan, S., Singla, A.K.: Nifedipine loaded chitosan microspheres prepared by emulsification phase separation. Biotech. Histochem. 78, 243–254 (2003)

    CAS  Google Scholar 

  46. Gupta, P., Bansal, A.K.: Devitrification of amorphous celecoxib. AAPS PharmSciTech. 6, E223–E230 (2005)

    Article  Google Scholar 

  47. Kausbal, A.M., Gupta, P., Bansal, A.K.: Amorphous drug delivery systems: molecular aspects, design, and performance. Crit. Rev. Ther. Drug Carrier Syst. 21(3), 133–193 (2004)

    Article  Google Scholar 

  48. Karavas, E., Georgarakis, E., Sigalas, M.P., Avgoustakis, K., Bikiaris, D.: Investigation of the release mechanism of a sparingly water-soluble drug from solid dispersions in hydrophilic carriers based on physical state of drug, particle size distribution and drug-polymer interactions. Eur. J. Pharm. Biopharm. 66(3), 334–347 (2007)

    Article  CAS  Google Scholar 

  49. Karavas, E., Georgarakis, E., Docoslis, A., Bikiaris, D.: Combining SEM, TEM, and micro-Raman techniques to differentiate between the amorphous molecular level dispersions and nanodispersions of a poorly water-soluble drug within a polymer matrix. Int. J. Pharm. 340, 76–83 (2007)

    Article  CAS  Google Scholar 

  50. Shah, B., Kakumanu, V.K., Bansal, A.K.: Analytical techniques for quantification of amorphous/crystalline phases in pharmaceutical solids. J. Pharm. Sci. 95, 1641–1665 (2006)

    Article  CAS  Google Scholar 

  51. Jun, S.W., Kim, M.S., Kim, J.S., Park, H.J., Lee, S., Woo, J.S., Hwang, S.J.: Preparation and characterization of simvastatin/hydroxypropyl-β-cyclodextrin inclusion complex using supercritical antisolvent (SAS) process. Eur. J. Pharm. Biopharm. 66(3), 413–421 (2007)

    Article  CAS  Google Scholar 

  52. Boonsongrit, Y., Mitrevej, A., Mueller, B.W.: Chitosan drug binding by ionic interaction. Eur. J. Pharm. Biopharm. 62(3), 267–274 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors are thankful to AICTE [F.No.: 8023/BOR/RPS-153/2006-07] New Delhi for financial assistance. Authors are thankful to Ranbaxy, India for providing pure drug and Dr. Denis Simon and Emilie Van- Oudendycke of Roquette, Lestrem, France for providing hydroxypropyl-beta-cyclodextrin. Authors also extend their gratitude to Head, University Institute of pharmacy, Pt., Ravishankar Shukla University, Raipur, Chhattisgarh, India for providing facilities to carry out research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amber Vyas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vyas, A., Saraf, S. & Saraf, S. Encapsulation of cyclodextrin complexed simvastatin in chitosan nanocarriers: A novel technique for oral delivery. J Incl Phenom Macrocycl Chem 66, 251–259 (2010). https://doi.org/10.1007/s10847-009-9605-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-009-9605-y

Keywords

Navigation