Phosphorus–nitrogen compounds: part 16. Synthesis, stereogenism, anisochronism and the relationship between 31P NMR spectral and crystallographic data of monotopic spiro-crypta phosphazene derivatives

  • Zeynel Kılıç
  • Aytuğ Okumuş
  • Şemsay Demiriz
  • Selen Bilge
  • Aslı Öztürk
  • Nagihan Çaylak
  • Tuncer Hökelek
Original Article


The condensation reactions of N2O3-donor type coronands (13) with hexachlorocyclotriphosphazatriene, N3P3Cl6, resulted in the formation of spiro-crypta phosphazene derivatives (46). These compounds with excess morpholine and 1,4-dioxa-8-azaspiro[4,5]decane (DASD) afford fully substituted morpholino (7 and 10) and 1,4-dioxa-8-azaspiro[4,5]deca (8)-substituted phosphazene derivatives, respectively. Whilst, in the same conditions, the reactions of 4, 5 and 6 with pyrrolidine, morpholine and DASD also produce partially pyrrolidino-substituted geminal (9 and 11), mono-substituted pyrrolidino (12), morpholino (13) and 1,4-dioxa-8-azaspiro[4,5]deca (14) phosphazenes. It has been clearly observed that the chloride replacement reactions of 4, 5 and 6 with pyrrolidine lead to the geminal products. Compounds 7, 8 and 10 are the first examples of anisochronic tetrakis (amino) phosphazenes according to 31P NMR data. The structures of 7, 8 and 1014 have been determined by FTIR, MS, 1H, 13C and 31P NMR, DEPT, and HETCOR spectral data. The solid-state structures of 9, 13 and 14 have been examined by X-ray diffraction techniques. The sums of the bond angles around the spiro cyclic nitrogen atoms [344.8(4)° and 347.6(4)°] of 9, indicate that the nitrogen atoms have pyramidal geometries. Thus, the N atoms seem to have stereogenic configurations. Compounds 1214 also have two stereogenic P-atoms, and they are expected to be in the mixture of enantiomers. The relationships between NPN (α and α′) bond angles and δPspiro values and the correlation of Δ(P–N) with δPspiro and Δ(δP) values are presented.


Spiro-crypta-phosphazenes Anisochronism Stereogenism Spectroscopy X-ray crystallography 



The authors acknowledge The Scientific and Technical Research Council of Turkey (grant no. 104T392),and Hacettepe University, Scientific Research Unit (grant no. 02 02 602 002) for financial support.


  1. 1.
    Marck, J.E., Allcock, H.R., West, R.: Inorganic Polymers, 2nd edn. Oxford University Press, New York (2005)Google Scholar
  2. 2.
    Benson, M.A., Steiner, A.: Connecting cyclophosphazene via ring N-centers with covalent linkers. Chem. Commun. (Camb.). 5026–5028 (2005). doi: 10.1039/b510898e
  3. 3.
    Mathew, D., Nair, C.P.R., Ninan, K.N.: Phosphazene–triazine cyclomatrix network polymers: some aspects of synthesis, thermaland flame-retardant characteristics. Polym. Int. 49, 48–56 (2000). doi: 10.1002/(SICI)1097-0126(200001)49:1<48::AID-PI309>3.0.CO;2-M CrossRefGoogle Scholar
  4. 4.
    Zhang, Y., Huynh, K., Manners, I., Reed, C.A.: Ambient temperature ring-opening polymerization (ROP) of cyclic chlorophosphazene trimer(N3P3Cl6) catalyzed by silylium ions. Chem. Commun. (Camb.). 494–496 (2008). doi: 10.1039/b713933k
  5. 5.
    Allcock, H.R., Napierala, M.E., Cameron, C.G., O’Connor, S.J.M.: Synthesis and characterization of ionically conducting alkoxy ether/alkoxy mixed-substituent poly(organophosphazenes) and their use as solid solvents for ionic conduction. Macromolecules 29, 1951–1956 (1996). doi: 10.1021/ma951391i CrossRefGoogle Scholar
  6. 6.
    Xu, G., Lu, Q., Yu, B., Wen, L.: Inorganic polymer phosphazene disulfide as cathode material for rechargeable lithium batteries. Solid State Ion. 177, 305–309 (2006). doi: 10.1016/j.ssi.2005.10.029 CrossRefGoogle Scholar
  7. 7.
    Allcock, H.R., Wood, R.M.: Design and synthesis of ion-conductive polyphosphazenes for fuel cell applications: review. J. Polym. Sci. B Polym. Phys. 44, 2358–2368 (2006). doi: 10.1002/polb.20864 CrossRefGoogle Scholar
  8. 8.
    Greish, Y.E., Bender, J.D., Lakshmi, S., Brown, P.W., Allcock, H.R., Laurencin, C.T.: Low temperature formation of hydroxyapatite-poly(alkyl oxybenzoate)phosphazene composites for biomedical applications. Biomaterials 26, 1–9 (2005). doi: 10.1016/j.biomaterials.2004.02.016 CrossRefGoogle Scholar
  9. 9.
    Singh, A., Krogman, N.R., Sethurman, S., Nair, L.S., Sturgeon, J.L., Brown, P.W., Laurencin, C.T., Allcock, H.R.: Effect of side group chemistry on the properties of biodegradable l-alanine cosubstituted polyphosphazenes. Biomacromolecules 7, 914–918 (2006). doi: 10.1021/bm050752r CrossRefGoogle Scholar
  10. 10.
    Carriedo, G.A., Garcia-Alonso, J.F., Garcı’a-Alvarez, L.J., Pappalardo, G.C., Punzo, F., Rossi, P.: Stereoisomer discrimination through π-stacking interactions in spirocyclic phosphazenes bearing 2,2′-dioxybiphenyl units. Eur. J. Inorg. Chem. 2003(13), 2413–2418 (2003)CrossRefGoogle Scholar
  11. 11.
    Shimono, S., Takahashi, H., Sakai, N., Tamura, R., Ikuma, N., Yamauchi, J.: Use of cyclotriphosphazene as a molecular scaffold for building chiral multispin systems. Mol. Cryst. Liq. Cryst. 440, 37–52 (2005). doi: 10.1080/15421400590957657 CrossRefGoogle Scholar
  12. 12.
    Gleria, M., De Jaeger, R.: Aspects of phosphazene research. Inorg. Organomet. Polym. 11, 1–45 (2005). doi: 10.1023/A:1013276518701 CrossRefGoogle Scholar
  13. 13.
    Çaylak, N., Hökelek, T., Bilge, S., Özgüç, B., Kılıç, Z.: 4,4,6,6-Tetrachloro-2,2-(ethylenedioxydi-o-phenylenediimino)-2λ5,4λ5,6λ5-cyclotriphosphazene. Acta Crystallogr. C 60, 461–463 (2004). doi: 10.1107/S0108270104010169 CrossRefGoogle Scholar
  14. 14.
    Tercan, B., Hökelek, T., Bilge, S., Özgüç, B., Kılıç, Z.: 4,4,6,6-Tetrachloro-2,2-(propylenedioxydi-o-phenylenediimino)-2λ5,4λ5,6λ5-cyclotriphosphazene. Acta Crystallogr. C 60, 381–383 (2004). doi: 10.1107/S0108270104006894 CrossRefGoogle Scholar
  15. 15.
    Özgüç, B., Bilge, S., Çaylak, N., Demiriz, Ş., İşler, H., Havyalı, M., Kılıç, Z., Hökelek, T.: Phosphorus–nitrogen compounds: novel spiro-cyclophosphazenic lariat (PNP-pivot) ether derivatives. Structures of 4,4,6,6-tetrachloro-2,2-[3-oxa-1,5-pentane dioxy bis(2-phenyl-amino)]cyclo-2λ5,4λ5,6λ5-triphosphazene and 4,4,6,6-tetrachloro-2,2-[1,2-xylylene dioxy bis(2-phenylamino)]cyclo-2λ5,4λ5,6λ5-triphosphazene. J. Mol. Struct. 748, 39–47 (2005). doi: 10.1016/j.molstruc.2005.02.015 CrossRefGoogle Scholar
  16. 16.
    Asmafiliz, N.G.: Synthesis of crypta phosphazene derivatives. Master Dissertation, Ankara University, Ankara, Turkey (2005)Google Scholar
  17. 17.
    Bilge, S., Kılıç, Z., Çaylak, N., Hökelek, T.: Phosphorus–nitrogen compounds: novel spiro-crypta-phosphazenes. Structure of {pentane-3-oxa-NAN′-bis(1,5-ox benzyl)-spiro (propane-1′,3′-diamino)-4,4,6,6-tetrachlorocyclo-2λ5,4λ5,6λ5-triphosphazatriene. J. Mol. Struct. 707, 139–146 (2004). doi: 10.1016/j.molstruc.2004.07.009 CrossRefGoogle Scholar
  18. 18.
    Tercan, B., Hökelek, T., Bilge, S., Demiriz, Ş., Kılıç, Z.: 4,4,6,6-Tetrachloro-1′,3′-[2,2′-(3-oxapentane-1,5-dioxy)dibenzyl]-2λ5,4λ5,6λ5-cyclotriphosphazene-2-spiro-2′-1,3,2-diazaphospholanebenzenehemisolvate. Acta Crystallogr. E60, 1369–1372 (2004)Google Scholar
  19. 19.
    Bilge, S., Demiriz, Ş., Okumuş, A., Kılıç, Z., Tercan, B., Hökelek, T., Büyükgüngör, O.: Phosphorus-nitrogen compounds: part 13. Syntheses, crystal structures, spectroscopic, stereogenic and anisochronic properties of novel spiro-ansa-spiro-, spiro-bino-spiro- and spiro-. Crypta phosphazene derivatives. Inorg. Chem. 45, 8755–8767 (2006)CrossRefGoogle Scholar
  20. 20.
    Asmafiliz, N., İlter, E.E., Işıklan, M., Kılıç, Z., Tercan, B., Çaylak, N., Hökelek, T., Büyükgüngör, O.: Novel phosphazene derivatives. Synthesis, anisochronism and structural investigations of mono- and ditopic spiro-crypta phosphazenes. J. Mol. Struct. 832, 172–183 (2007). doi: 10.1016/j.molstruc.2006.08.017 CrossRefGoogle Scholar
  21. 21.
    İlter, E.E., Çaylak, N., Işıklan, M., Asmafiliz, N., Kılıç, Z., Hökelek, T.: Phosphorus-nitrogen compounds. spiro- and Crypta-phosphazene derivatives: synthesis and spectral investigations. J. Mol. Struct. 697, 119–129 (2004). doi: 10.1016/j.molstruc.2004.03.043 CrossRefGoogle Scholar
  22. 22.
    Asmafiliz, N., İlter, E.E., Kılıç, Z., Hökelek, T., Şahin, E.: Synthesis, anisochronism and the relationship between crystallographic and spectral data of monotopic spiro-crypta phosphazenes. J. Chem. Sci. 120(4), 363–376 (2008). doi: 10.1007/s12039-008-0060-x CrossRefGoogle Scholar
  23. 23.
    Tercan, B., Hökelek, T., Büyükgüngör, O., Asmafiliz, N., İlter, E.E., Kılıç, Z.: 7,11-[butane-1,4-diyldioxydi-o-phenylne-dimethylene-6,6-dichloro-4,4-bis(pyrrolidino)2λ5, 4λ5, 6λ5-triphosphaza-1,3,5,7,11-pentaazaspiro [5.5]-undeca-1,3,5-triene. Acta Crystallogr. E61, 2145–2147 (2005)Google Scholar
  24. 24.
    Bilge, S., Natsagdorj, A., Demiriz, Ş., Çaylak, N., Kılıç, Z., Hökelek, T.: Phosphorus-nitrogen compounds: novel spirocyclic phosphazene derivatives. Structure of 3,3′-propane-1,3-diylbis[4′,4′,6′,6′-tetrachloro-3,4-dihydrospiro[1,3,2-benzoxazaphosphorine-2,2′λ5-[4λ5, 6λ5][1,3,5,2,4,6]triazatriphosphorine]]. Helv. Chim. Acta 87, 2088–2099 (2004). doi: 10.1002/hlca.200490188 CrossRefGoogle Scholar
  25. 25.
    Safran, S., Hökelek, T., Bilge, S., Demiriz, Ş., Natsagdorj, A., Kılıç, Z.: Crystal structure of 8,8-dichloro-1,2,10,11,13,14-hexahydro-6λ5,8λ5,10λ5-6,10-nitrilo[1,3,5,7,2,4,6] tetratriphos-phoninobis[1,3,2]oxaza phosphorine. Anal. Sci. 21, 77–78 (2005). doi: 10.2116/analsci.21.77 CrossRefGoogle Scholar
  26. 26.
    Tercan, B., Hökelek, T., Bilge, S., Natsagdorj, A., Demiriz, Ş., Kılıç, Z.: 6′,6′-Dichloro-3,3″-etheno-3,4,3″,4″-tetrahydro-2H-1,3-benzoxazine-2-spiro-2′)-(2λ5,4λ5,6λ5 cyclotriphosphazene)-4′-spiro-2″-2H-1,3-benzoxazin. Acta Crystallogr. E60, 795–797 (2004)Google Scholar
  27. 27.
    Ilter, E.E., Asmafiliz, N., Işıklan, M., Kılıç, Z., Hökelek, T., Çaylak, N., Şahin, E.: Phosphorus-nitrogen compounds: part 14. Synthesis, stereogenism and structural ınvestigations of novel N/O spirocyclic phosphazene derivatives. Inorg. Chem. 46(23), 9931–9944 (2007). doi: 10.1021/ic701216f CrossRefGoogle Scholar
  28. 28.
    Hökelek, T., Akduran, N., Yıldız, M., Dal, H., Kılıç, Z.: 2,4-[2,2′-Methylenebis(4-nitrophenoxy)]-2,4,6,6-tetra chloro cyclo-2λ5,4λ5,6λ5-triphosphazatriene (ansa). Acta Crystallogr. C 56, 90–92 (2000). doi: 10.1107/S0108270199012986 CrossRefGoogle Scholar
  29. 29.
    Öztürk, L., Hökelek, T., Dal, H., Kılıç, Z.: 2,2-[2,200-Methylenebis(4-nitrophenoxy)]-4,6-[2,2′-methylenebis(4-nitro phenoxy)]-4,6-dichloro-1,3,5,2λ5,4λ5,6λ5-triazatriphosphorine (spiro-ansa)acetonitrile. Acta Crystallogr. E58, 20–23 (2001)Google Scholar
  30. 30.
    Perin, D.D., Armarego, W.L., Perrin, D.R.: Purification of Laboratory Chemicals, 2nd edn. Pergamon, Oxford (1980)Google Scholar
  31. 31.
    Hökelek, T., Akduran, N., Bilge, S., Kılıç, Z.: Crystal Structure of 3,4,6,7,15,16,17,18,19,20,21-Undecahydro-2,5,6-trioxa-16,20-diazatricyclo [,14] hexacosa-9,11,13,22,24,26(1)-hexaene. Anal. Sci. 17, 801–802 (2001). doi: 10.2116/analsci.17.801 CrossRefGoogle Scholar
  32. 32.
    Hökelek, T., Bilge, S., Kılıç, Z.: 1,15-Diaza-3,4:12,13-dibenzo-5,8,11-trioxacycloheptadecane hemihydrate. Acta Crystallogr. E59, 1607–1609 (2003)Google Scholar
  33. 33.
    North, A.C.T., Phillips, D.C., Mathews, F.S.: A semi-empirical method of absorption correction. Acta Crystallogr. A 24, 351–359 (1968). doi: 10.1107/S0567739468000707 CrossRefGoogle Scholar
  34. 34.
    Bruker.: SADABS. Bruker AXS Inc., Madison, Wisconsin, USA (1996)Google Scholar
  35. 35.
    Sheldrick, G.M.: A short history of SHELX. Acta Crystallogr. A 64, 112–122 (2008). doi: 10.1107/S0108767307043930 CrossRefGoogle Scholar
  36. 36.
    Farrugia, L.J.: ORTEP-3 for Windows—a version of ORTEP-III with a Graphical User Interface (GUI). J. Appl. Cryst. 30, 565 (1997). doi: 10.1107/S0021889897003117 CrossRefGoogle Scholar
  37. 37.
    Bullen, G.J.: Improved determination of the crystal structure of hexachlorocyclotriphosphazene. J. Chem. Soc. A 1450–1453 (1971). doi: 10.1039/j19710001450
  38. 38.
    Goodwin, H.J., Henrick, K., Lindoy, L., McPartlin, M., Tasker, P.A.: Studies of macrocyclic ligand hole sizes. 1. X-ray structures of the nickel bromide complexes of the diimine and reduced forms of a 16-membered macrocyclic ring incorporating O2N2 donors. Inorg. Chem. 21, 3261–3264 (1982). doi: 10.1021/ic00139a002 CrossRefGoogle Scholar
  39. 39.
    Bilge, S., Coles, S.J., Davies, D.B., Hursthouse, M.B., Kılıç, Z., Rutherford, J.S., Shaw, R.A.: The clathrate and channel inclusion systems co-exist in the crystal structure of a bis-C-pivot lariat ether. CrystEngComm 10, 873–878 (2008). doi: 10.1039/b716882a CrossRefGoogle Scholar
  40. 40.
    Bilge, S., Özgüç, B., Safran, S., Demiriz, Ş., İşler, H., Hayvalı, M., Kılıç, Z., Hökelek, T.: Phosphorus–nitrogen compounds: novel fully substituted spiro-cyclophosphazenic lariat (PNP-pivot) ether derivatives. Structures of 4,4,6,6-tetrapyrrolidino-2,2-[3-oxa-1,5-pentane dioxy bis(2-phenylamino)]cyclo-2λ5,4λ5,6λ5-triphosphazene and 4,4,6,6-tetrapyrrolidino-2,2-[1,2-xylylene dioxy bis(2-phenylamino)]cyclo-2λ5,4λ5,6λ5-triphosphazene. J. Mol. Struct. 748, 101–109 (2005). doi: 10.1016/j.molstruc.2005.03.018 CrossRefGoogle Scholar
  41. 41.
    Beşli, S., Coles, S.J., Davies, D.B., Hursthouse, M., Kılıç, A., Mayer, T., Shaw, R.A.: Structural investigations of phosphorus-nitrogen compounds. 5. Relationships between molecular parameters of 2,2-diphenyl-4,6-cis-oxytetra (ethyleneoxy)-4,6-R2-cyclotriphosphazatrienes (R = Cl, OCH2CF3, OPh, OMe, NHPh, NHBut) and substituent basicity constants. Acta Crystallogr. B 58, 1067–1073 (2002). doi: 10.1107/S0108768102018608 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Zeynel Kılıç
    • 1
  • Aytuğ Okumuş
    • 1
  • Şemsay Demiriz
    • 1
  • Selen Bilge
    • 1
  • Aslı Öztürk
    • 2
  • Nagihan Çaylak
    • 3
  • Tuncer Hökelek
    • 2
  1. 1.Department of ChemistryAnkara UniversityTandogan, AnkaraTurkey
  2. 2.Department of PhysicsHacettepe UniversityBeytepe, AnkaraTurkey
  3. 3.Department of PhysicsSakarya UniversityEsentepe, AdapazarıTurkey

Personalised recommendations