Synthesis of a novel tripodand having 3-hydroxy-2-naphthoeic amide groups and its anion recognition ability

  • Jie Hao
  • Kazuhisa Hiratani
  • Naohiro Kameta
  • Toru Oba
Original Article


A novel tripodand having 3-hydroxy-2-naphthoeic amide groups was prepared by the reaction of 1,3,5-tris(aminomethyl)-2,4,6-trimethylbenzene with 3-allyloxy-2-naphthoeic acid chloride followed by thermal Claisen rearrangement. This tripodand can exhibit the anion binding ability in chloroform solution. In particular, it can bind with acetate, dihydrogen phosphate, and fluoride ions to form 1:1 complexes.


Tripodand Claisen rearrangement Anion recognition Naphthoeic acid derivatives 



One of the authors (K.H.) thanks the Ministry of Education, Culture, Sports, Science and Technology (MEST) for partial support through a Grant-in-Aid for Scientific Research (No. 19550132).


  1. 1.
    Steed, J.W.: A modular approach to anion binding podands: adaptability in design and synthesis leads to adaptability in properties. Chem. Commun. (Camb.) 2637–2649 (2006). doi: 10.1039/b601511e
  2. 2.
    Katayev, E.A., Ustynyuk, Y.A., Sessler, J.L.: Receptors for tetrahedral oxyanions. Coord. Chem. Rev. 250, 3004–3037 (2006). doi: 10.1016/j.ccr.2006.04.013 CrossRefGoogle Scholar
  3. 3.
    Schmitdtchen, F.P.: Reflections on the construction of anion receptors. Is there a sign to resign from design. Coord. Chem. Rev. 250, 2918–2928 (2006). doi: 10.1016/j.ccr.2006.07.009 CrossRefGoogle Scholar
  4. 4.
    Gale, P.A.: Structural and molecular recognition studies with acyclic anion receptors. Acc. Chem. Res. 39, 465–475 (2006). doi: 10.1021/ar040237q CrossRefGoogle Scholar
  5. 5.
    Yoon, J., Kim, S.K., Singh, N.J., Kim, K.S.: Imidazolium receptors for the recognition of anions. Chem. Soc. Rev. 35, 355–360 (2006). doi: 10.1039/b513733k CrossRefGoogle Scholar
  6. 6.
    Gale, P.A., Garcia-Garrido, S.E., Garric, J.: Anion receptors based on organic frameworks: highlights from 2005 and 2006. Chem. Soc. Rev. 37, 151–190 (2008). doi: 10.1039/b715825d CrossRefGoogle Scholar
  7. 7.
    Turner, D.R., Paterson, M.J., Steed, J.W.: A conformationally flexible, urea-based tripodal anion receptor: solid-state, solution, and theoretical studies. J. Org. Chem. 71, 1598–1608 (2006). doi: 10.1021/jo052339f CrossRefGoogle Scholar
  8. 8.
    Kuswandi, B., Nuriman, Verboom, W., Reinhoudt, D.N.: Tripodal receptors for cation and anion sensors. Sensors 6, 978–1017 (2006). doi: 10.3390/s6080978 CrossRefGoogle Scholar
  9. 9.
    Custelcean, R., Remmy, P., Bonnesson, P.V., Jiang, D.E., Moyer, B.A.: Sulfate recognition by persistent crystalline capsules with rigidified hydrogen-bonding cavities. Angew. Chem. Int. Ed. 47, 1–6 (2008). doi: 10.1002/anie.200704937 CrossRefGoogle Scholar
  10. 10.
    Werner, E.J., Avedano, S., Botta, M., Hay, B.P., Moore, E.G., Aime, S., Raymond, K.N.: Highly soluble tris-hydroxypyridonate Gd(III) complexes with increased hydration number, fast water exchange, slow electronic relaxation, and high relativity. J. Am. Chem. Soc. 129, 1870–1871 (2007). doi: 10.1021/ja068026z CrossRefGoogle Scholar
  11. 11.
    Schmuck, C., Schwegmann, M.: A molecular flytrap for the selective binding of citrate and other tricarboxylates in water. J. Am. Chem. Soc. 127, 3373–3379 (2005). doi: 10.1021/ja0433469 CrossRefGoogle Scholar
  12. 12.
    Amendola, V., Boiocchi, M., Fabbrizzi, L., Palchetti, A.: What anions do inside a receptor’s cavity: a trifurcate anion receptor providing both electrostatic and hydrogen-bonding interactions. Chem. Eur. J. 11, 5648–5660 (2005)CrossRefGoogle Scholar
  13. 13.
    Wright, A.T., Anslyn, E.V.: Differential receptor arrays and assays for solution-based molecular recognition. Chem. Soc. Rev. 35, 14–28 (2006)CrossRefGoogle Scholar
  14. 14.
    Wiskur, S.L., Floriano, P.N., Anslyn, E.V.: A multicomponent sensing ensemble in solution: differentiation between structurally similar analytes. Angew. Chem. Int. Ed. 42, 2070–2072 (2003). doi: 10.1002/anie.200351058 CrossRefGoogle Scholar
  15. 15.
    Steed, J.W., Atwood, J.L.: Supramolecular Chemistry. Wiley, New York (2000)Google Scholar
  16. 16.
    Albrecht, M., Fröhlich, R.: Symmetry driven self-assembly of metallo-supramolecular architectures. Bull. Chem. Soc. Jpn. 80, 797–808 (2007). doi: 10.1246/bcsj.80.797 CrossRefGoogle Scholar
  17. 17.
    Petoud, S., Muller, G., Moore, E.G., Xu, J., Sokolnicki, J., Riehl, J.P., Le, U., Cohen, S.M., Raymond, K.N.: Brilliant Sm, Eu, Tb, and Dy chiral lanthanide complexes with strong circularly polarized luminescence. J. Am. Chem. Soc. 129, 77–83 (2007). doi: 10.1021/ja064902x CrossRefGoogle Scholar
  18. 18.
    Westcott, A., Fisher, J., Harding, L.P., Rizkallah, P., Hardie, M.J.: Self-assembly of a 3-D triply interlocked chiral[2]catenane. J. Am. Chem. Soc. 130, 2950–2951 (2008). doi: 10.1021/ja8002149 CrossRefGoogle Scholar
  19. 19.
    Albrecht, M., Janser, I., Fröhlich, R.: Catechol imine ligands: from helicates to supramolecular tetrahedral. Chem. Commun. (Camb.) 157–165 (2005). doi: 10.1039/b410828k
  20. 20.
    Caudler, D.L., Raymond, K.N.: Supramolecular self-recognition and self-assembly in Gallium(III). Catecholamide triple helices. Angew. Chem. Int. Ed. Engl. 36, 1440–1442 (1997). doi: 10.1002/anie.199714401 CrossRefGoogle Scholar
  21. 21.
    Meyer, M., Kersting, B., Powers, R.E., Raymond, K.N.: Rearrangement reactions in dinuclear triple helicates. Inorg. Chem. 36, 5179–5191 (1997). doi: 10.1021/ic970864u CrossRefGoogle Scholar
  22. 22.
    Enemark, E.J., Stack, T.D.P.: Synthesis and structural characterization of a stereospecific dinuclear gallium triple helix: use of the trans-influence in metal-assisted self-assembly. Angew. Chem. Int. Ed. Engl. 34, 996–998 (1995). doi: 10.1002/anie.199509961 CrossRefGoogle Scholar
  23. 23.
    Johnson, D.W., Raymond, K.N.: The role of guest molecules in the self-assembly of metal-ligand clusters. Supramol. Chem. 13, 639–659 (2001). doi: 10.1080/10610270108027494 CrossRefGoogle Scholar
  24. 24.
    Hayashi, M., Hiratani, K., Kina, S., Ishii, M., Saigo, K.: Synthesis and binding property of a novel tripodal hexadentate ligand having catechol moieties. Tetrahedron Lett. 39, 6211–6214 (1998). doi: 10.1016/S0040-4039(98)01278-7 CrossRefGoogle Scholar
  25. 25.
    Burk, S., Albrecht, M., Hiratani, K.: Selective inclusion of cesium ion in a cryptand-type Ti(IV) complex derived from a tripodal tris-2,3-dihydroxynaphthalene ligand. J. Incl. Phenom. Macrocycl. Chem. 61, 353–359 (2008)CrossRefGoogle Scholar
  26. 26.
    Hayashi, M., Ishii, M., Hiratani, K., Saigo, K.: Synthesis and binding properties of new tripodal hexadentate ligands having three quinolinol moieties for trivalent metal cations. Tetrahedron Lett. 39, 6215–6218 (1998). doi: 10.1016/S0040-4039(98)01277-5 CrossRefGoogle Scholar
  27. 27.
    Hiratani, K., Albrecht, M.: The tandem Claisen rearrangement in the construction of building blocks for supramolecular chemistry. Chem. Soc. Rev. 37, 2413–2421 (2008). doi: 10.1039/b719548f CrossRefGoogle Scholar
  28. 28.
    Conners, K.A.: Binding Constants, the Measurement of Molecular Complex Stability. Wiley, New York (1987)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Jie Hao
    • 1
  • Kazuhisa Hiratani
    • 1
  • Naohiro Kameta
    • 2
  • Toru Oba
    • 1
  1. 1.Department of Applied ChemistryUtsunomiya UniversityUtsunomiyaJapan
  2. 2.National Institute of Advanced Industrial Science and TechnologyTsukubaJapan

Personalised recommendations