Synthesis of novel cone-configurated hexa-tert-butyl-trimethoxy-calix[6]arenes bearing tris(bipyridyl) pendants and their use in recognition and ionic speciation

Original Article


A series of novel cone-configurated p-tert-butyl-trimethoxycalix[6]arenes bearing three 2,2′-bipyridyl units at their lower rim have been synthesized. The 1H NMR and 13C NMR spectra of synthesized derivatives revealed that the ring inversion in calix[6]arene could be suppressed by the introduction of three 2,2′-bipyridyl moieties at the lower rim of calix[6]arene scaffold which fixes it into its cone configuration. The complexation ability of the synthesized receptors (5ad) towards Fe(II) ion was investigated by UV-Visible titration to reveal that the synthesized receptors interact with Fe(II) in a 1:1 binding stoichiometry and respond to a specific oxidation state of the metal ion. The observations have significance for studies directed at the design of molecular receptors for ionic speciation through molecular recognition.


p-tert-Butylcalix[6]arene 2, 2′-Bipyridine Complexation Speciation 



Authors acknowledge the financial assistance received from the Department of Science and Technology, Department of Biotechnology, Ministry of Rural Development, Ministry of Environment and Forests (Govt. of India) and the Council of Scientific and Industrial Research (CSIR), New Delhi for a senior research fellowship to R.S. The Sophisticated Analytical Instrument Facility (SAIF), Central Drug Research Institute, Lucknow is gratefully acknowledged for recording the FAB Mass spectra reported in this paper.


  1. 1.
    Gutsche, C.D.: In: Stoddart, J.F. (ed.) Calixarene. RSC Monograph in Supramolecular Chemistry. Royal Society of Chemistry, Cambridge (1989)Google Scholar
  2. 2.
    Gutsche, C.D.: In: Stoddart, J.F. (ed.) Calixarene Revisited. RSC Monograph in Supramolecular Chemistry. Royal Society of Chemistry, Cambridge (1998)Google Scholar
  3. 3.
    Vicens, J., Bohmer, V.: Calixarene a Versatile Class of Macrocycles Compounds. Kluwer, Dordrecht (1991)Google Scholar
  4. 4.
    Ikeda, A., Shinkai, S.: Novel cavity design calix[n]arene skeletons: toward molecular recognition and metal binding. Chem. Rev. 97, 1713–1734 (1997)CrossRefGoogle Scholar
  5. 5.
    Kanamathareddy, S., Gutsche, C.D.: Synthesis and conformational properties of calix[6]arenes bridged on the lower rim: self-anchored rotaxane. J. Am. Chem. Soc. 115, 6572–6579 (1993)CrossRefGoogle Scholar
  6. 6.
    Eggert, J.P.W., Harrowfield, J., Luning, U., Skelton, B.W., White, A.H., Loffler, F., Konrad, S.: Improved synthesis and conformational analysis of an A,D-1,10-phenanthroline-bridged calix[6]arene. Eur. J. Org. Chem. 1348–1353 (2005)Google Scholar
  7. 7.
    Saiki, T., Goto, K., Tokitoh, N., Okazaki, R.: Synthesis and structure of a bridged calix[6]arene with a sulfenic acid functionality in the cavity. J. Org. Chem. 61, 2924–2925 (1996)CrossRefGoogle Scholar
  8. 8.
    Gong, S.-L., Chen, Y.-K., Li, J., Duan, H.-P., Chen, Y.-Y.: A, C-bridged calix[6]arene: relationship between the length of bridge and conformation. Chin. J. Chem. 6, 22 (2004)Google Scholar
  9. 9.
    Chen, Y., Yang, Y.: Selective bridging of calix[6]arene: synthesis of 1, 2-calix[6]dioxocrowns. Chem. Lett. 5, 484–485 (2000)CrossRefGoogle Scholar
  10. 10.
    Otsuka, H., Shinkai, S.: Definitive evidence for inhibition of calix[6]arene ring inversion obtained from a 1, 3-xylenyl-bridged chiral calix[6]arene. J. Am. Chem. Soc. 118, 4271–4275 (1996)CrossRefGoogle Scholar
  11. 11.
    Chen, Y.-K., Chen, Y.-Y.: A new type of amido-substituted p-tert-butylcalix[6]arene: double diamide bridges on the lower rim. Org. Lett. 2, 743–745 (2000)CrossRefGoogle Scholar
  12. 12.
    Bennouna, L., Vicens, J., Aafari, Z., Yahyaoui, A., Burgard, M.: Synthesis and extraction properties of 1, 3, 5-O-trimethyl-2, 4, 6-tri-O-hydroxamic acid p-tert-butylcalix[6]arene. J. Incl. Phenom. Macrocycl. Chem. 40, 95–98 (2001)CrossRefGoogle Scholar
  13. 13.
    Galan, H., de Mendoza, J., Prados, P.: Conformational control of calix[6]arenes through multiple bridges. Eur. J. Org. Chem. 4093–4097 (2005)Google Scholar
  14. 14.
    Liu, J.-M., Zheng, Q.-Y., Chen, C.-F., Huang, Z.-T.: Selectively formylated and bridged calix[6]arene derivatives at the upper rim. Tetrahedron 63, 9939–9946 (2007)CrossRefGoogle Scholar
  15. 15.
    Darbost, U., Giorgi, M., Reinaud, O., Jabin, I.: A novel C 3v-symmetrical calix[6](aza)cryptand with a remarkably high and selective affinity for small ammoniums. J. Org. Chem. 69, 4879–4884 (2004)CrossRefGoogle Scholar
  16. 16.
    Grynszpan, M., Aleksiuk, O., Biali, S.E.: Phosphorus polybridged calixarene. J. Chem. Soc. Chem. Commun. 13–16 (1993)Google Scholar
  17. 17.
    Otsuka, H., Araki, K., Matsumoto, H., Harada, T., Shinkai, S.: Synthesis and NMR spectroscopic studies of bridged and capped calix[6]arenes: high-yield syntheses of unimolecular caged compounds from calix[6]arene. J. Org. Chem. 60, 4862–4867 (1995)CrossRefGoogle Scholar
  18. 18.
    Araki, K., Akao, K., Otsuka, H., Nakashima, K., Inokuehi, F., Shinkai, S.: Immobilization of the ring inversion motion in calix[6]arene by a cap with C3-symmetry. Chem. Lett. 23, 1251 (1994)CrossRefGoogle Scholar
  19. 19.
    Jabin, I., Reinaud, O.: First C 3v-symmetrical calix[6](aza)crown. J. Org. Chem. 68, 3416–3419 (2003)CrossRefGoogle Scholar
  20. 20.
    Gutsche, C.D.: The calixarene. Top. Curr. Chem. 123, 1–47 (1984)Google Scholar
  21. 21.
    Janseen, R.G., Verboon, W., Reinhoudt, D.N., Casnati, A., Feriks, M., Pochini, A., Ugozzoli, F., Ungaro, R., Nieto, P.M., Carramolino, M., Cuevas, F., Prados, P., de Mendoza, J.: Procedures for the selective alkylation of calix[6]arenes at the lower rim. Synthesis 380–385 (1993)Google Scholar
  22. 22.
    Schubert, U.S., Eschbaumer, C., Hochwimmer, G.: High yield synthesis of 5, 5′-dimethyl-2, 2′-bipyridine and 5, 5″-dimethyl-2, 2′:6′, 2″-terpyridine and some bisfunctionalization reactions using N-bromosuccinimide. Synthesis 5, 779–782 (1999)CrossRefGoogle Scholar
  23. 23.
    van Duynhoven, J.P.M., Janssen, R.G., Verboom, W., Franken, S.M., Casnati, A., Pochini, A., Ungaro, R., de Mendoza, J., Nieto, P.M., Prados, P., Reinboudt, D.N.: Control of calix[6]arene: conformations by self-inclusion of 1, 3, 5-tri-O-alkyl substituents: synthesis and NMR studies. J. Am. Chem. Soc. 116, 5814–5822 (1994)CrossRefGoogle Scholar
  24. 24.
    Otsuka, H., Araki, K., Shinkai, S.: Syntheses of all possible O-methylation products derivable from 5, 11, 17, 23, 29, 35-hexa-tertbutylcalix[6]arene-37, 38, 39, 40, 41, 42-hexol. J. Org. Chem. 59, 1542–1547 (1994)CrossRefGoogle Scholar
  25. 25.
    Ziessel, R., Hissler, M., Ulrich, G.: Synthesis of polydendate acyclic and macrocyclic polyamine ligands bearing 2,2′-bipyridine or 2,2′-bipyridine N,N′-dioxide moieties. Synthesis 1339–1345 (1998)Google Scholar
  26. 26.
    Benesi, H.A., Hildebrand, J.H.: A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J. Am. Chem. Soc. 71, 2703–2707 (1949)CrossRefGoogle Scholar
  27. 27.
    Cernerud, M., Warnmark, K., Moberg, C.: Complexation of bifunctional substrate to a heterobimetallic complexes of a ligand with hard and soft coordination sites. Tetrahedron Lett. 35, 5473–5476 (1994)CrossRefGoogle Scholar
  28. 28.
    Grammenudi, S., Vogtle, F.: Larger molecular cavities for small ions-double bridging of three bipyridine units. Angew. Chem. Int. Ed. Engl. 25, 1122–1124 (1986)CrossRefGoogle Scholar
  29. 29.
    Lou, B.-Y., Yuan, D.-Q., Gao, S.-Y., Wang, R.-H., Xu, Y., Han, L., Hong, M.-C.: A chiral supramolecular architecture [Cu2(4,4-bipyridine)2(sala)2]n·4.5nH2O(sala = N-(2-hydroxybenzyl)-l-alanine anion). J. Mol. Struct. 707, 231–234 (2004)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of ChemistryIndian Institute of TechnologyNew DelhiIndia

Personalised recommendations