Thiocyanate: selective membrane electrode based on macrotricyclic binuclear Cu(II)–Schiff base complex

Original Article


A highly selective PVC membrane electrode was prepared for thiocyanate (SCN) determination, based on macrotricyclic binuclear Cu(II)–Schiff base complex as an ionophore. The novel macrotricyclic compound (cryptand) was synthesized by condensation of 4,4′-diamino-dibenzo-18-crown-6 with bis(4-formyl phenyl)terephthalate under high-dilution condition and the structure was confirmed by FT-IR, 1H NMR,13C NMR and MS studies. The Cu(II) complex of the compound was prepared and was examined for use as anion-selective electrode as a carrier which displays an anti-Hofmeister selectivity sequence in following order: SCN > ClO4  > NO3  > CN > I > CO3 2− > NO2  > Br > Cl > SO4 2− with a preference for thiocyanate ion over many common anions. The electrode has a linear dynamic range between 1.0 × 10−7 and 1.0 × 10−1 M, with a Nernstian slope of −58.9 mV decade−1 and detection limit of 3.1 × 10−8 M. The working pH range of the sensor was found be in the range of 3.0–8.0. It exhibits a fast response time of 20 s and has a lifetime of about 2 months. Application of the electrode for determination of thiocyanate in waste water samples and in human urine samples have also been demonstrated.


Anion selective electrode Binuclear Cu(II) complex Thiocyanate PVC-membrane Macrotricyclic compound 



Authors would like to thank UGC New Delhi for financial assistantship. Anish Kumar would like to thank CSIR New Delhi for Senior Research Fellowship. Authors are also grateful to CDRI Lucknow for spectral analysis.

Supplementary material

10847_2009_9557_MOESM1_ESM.doc (319 kb)
(DOC 319 kb)


  1. 1.
    Li, Q., Wei, W., Liu, Q.: Indirect determination of thiocyanate with ammonium sulfate and ethanol by extraction flotation of copper. Analyst (Lond.) 125, 1885–1888 (2000). doi: 10.1039/b004497k CrossRefGoogle Scholar
  2. 2.
    Staden, J.F.V., Botha, A.: Spectrophotometric determination of thiocyanate by sequential injection analysis. Anal. Chim. Acta 403, 279–286 (2000). doi: 10.1016/S0003-2670(99)00651-0 CrossRefGoogle Scholar
  3. 3.
    Gong, B., Gong, G.: Fluorimetric method for the determination of thiocyanate with 2,7-dichlorofluorescein and iodine. Anal. Chim. Acta 394, 171–175 (1999). doi: 10.1016/S0003-2670(99)00295-0 CrossRefGoogle Scholar
  4. 4.
    Kato, T.: Dynamics of SCN ions in molten thiocyanates and aqueous solutions by Raman spectroscopy. Mol. Phys. 60, 1072–1092 (1987)CrossRefGoogle Scholar
  5. 5.
    Tanakaa, Y., Naruishia, N., Fukuyaa, H., Sakatab, J., Saitoc, K., Wakidaa, S.: Simultaneous determination of nitrite, nitrate, thiocyanate and uric acid in human saliva by capillary zone electrophoresis and its application to the study of daily variations. J. Chromatogr. A 1051, 193–197 (2004)Google Scholar
  6. 6.
    Michigami, Y., Fujii, K., Ueda, K., Yamamoto, Y.: Determination of thiocyanate in human saliva and urine by ion chromatography. Analyst (Lond.) 117, 1855–1858 (1992). doi: 10.1039/an9921701855 CrossRefGoogle Scholar
  7. 7.
    Ardakani, M.M., Mirhoseini, S.H., Niasari, M.S.: Copper selective electrode based on 1,8-bis (2-Hydroxynaphthaldiminato) 3,6-dioxaoctane. Acta Chim. Slov. 53, 197–203 (2006)Google Scholar
  8. 8.
    Shabanov, A.L., Khandar, A., Mamedov, I., Babazade, A.M., Sultanzade, S.S.: Highly sensitive ion-selective electrodes based on dithiacrown ethers for the determination of mercury in fish samples. Jomvlal Anah’tk Chemisto 55, 466–468 (2000)Google Scholar
  9. 9.
    Bakker, E., Buhlmann, P., Pretsch, E.: Carrier-based ion-selective electrodes and bulk optodes. 1. General characteristics. Chem. Rev. 97, 3083–3132 (1997). doi: 10.1021/cr940394a CrossRefGoogle Scholar
  10. 10.
    Chaniotakis, N.A., Chasser, A.M., Meyerhoff, M.E., Groves, J.T.: Influence of porphyrin structure on anion selectivities of manganese(III) porphyrin based membrane electrodes. Anal. Chem. 60, 185–188 (1988). doi: 10.1021/ac00153a020 CrossRefGoogle Scholar
  11. 11.
    Hattori, H., Komiya, S., Yuchi, A.: Anion selective electrodes based on porphyrin complexes of tetravalent metal ions. Anal. Sci. 17, 1353–1356 (2001). doi: 10.2116/analsci.17.1217 CrossRefGoogle Scholar
  12. 12.
    Khorasani, J.H., Amini, M.K., Motaghi, H., Tangestaninejad, S., Moghadam, M.: Manganese porphyrin derivatives as ionophores for thiocyanate-selective electrodes: the influence of porphyrin substituents and additives on the response properties. Sens. Actuators B Chem. 87, 448–456 (2002). doi: 10.1016/S0925-4005(02)00294-0 CrossRefGoogle Scholar
  13. 13.
    Amini, M.K., Shahrokhian, S., Tangestaninejad, S.: PVC-based Mn(III) porphyrin membrane-coated graphite electrode for determination of histidine. Anal. Chem. 71, 2502–2505 (1999). doi: 10.1021/ac9812633 CrossRefGoogle Scholar
  14. 14.
    Arvand, M., Pourhabib, A., Shemshadi, R., Giahi, M.: The potentiometric behavior of polymer-supported metallophthalocyanines used as anion-selective electrodes. Anal. Bioanal. Chem. 387, 1033–1039 (2007). doi: 10.1007/s00216-006-0988-y CrossRefGoogle Scholar
  15. 15.
    Xu, W.J., Chai, Y.Q., Yuan, R., Liu, S.L.: A novel thiocyanate-selective electrode based on a zinc–phthalocyanine complex. Anal. Bioanal. Chem. 385, 926–930 (2006). doi: 10.1007/s00216-006-0512-4 CrossRefGoogle Scholar
  16. 16.
    Hisamoto, H., Watanabe, K., Oka, H., Nakagawa, E., Spichiger, U.E., Suzuki, K.: Flow-through type chloride ion selective optodes based on lipophilic organometallic chloride adducts and a lipophilic anionic dye. Anal. Sci. 10, 615–622 (1994). doi: 10.2116/analsci.10.615 CrossRefGoogle Scholar
  17. 17.
    Rothmaier, M., Simon, W.: Chloride-selective electrodes based on mercury organic-compounds as neutral carriers. Anal. Chim. Acta 271, 135–141 (1993). doi: 10.1016/0003-2670(93)80560-8 CrossRefGoogle Scholar
  18. 18.
    Hisamoto, H., Siswanta, D., Nishihara, H., Suzuki, K.: Anion selective polymeric membrane electrodes based on metallocenes. Anal. Chim. Acta 304, 171–176 (1995). doi: 10.1016/0003-2670(94)00614-R CrossRefGoogle Scholar
  19. 19.
    Shamsipur, M., Uousefi, M., Ganjali, M.R., Poursaberi, T., Rastegar, M.F.: Highly selective sulfate PVC membrane electrode based on 2,5-diphenyl-1,2,4,5-tetraza-bicyclo[2.2.1]heptane as a neutral carrier. Sens. Actuators B Chem. 82, 105–110 (2002). doi: 10.1016/S0925-4005(01)00997-2 CrossRefGoogle Scholar
  20. 20.
    Ardakani, M.M., Ensafi, A.A., Niasari, M.S., Chahooki, S.M.: Selective thiocyanate poly(vinyl chloride) membrane based on a 1,8-dibenzyl-1,3,6,8,10,13-hexaazacyclotetradecane-Ni (II) perchlorate. Anal. Chim. Acta 462, 25–30 (2002). doi: 10.1016/S0003-2670(02)00314-8 CrossRefGoogle Scholar
  21. 21.
    Ying, M., Yuan, R., Zhang, X.M., Song, Y.Q., Li, Z.Q., Shen, G.L., Yu, R.Q.: Highly selective iodide(poly-vinyl)chloride membrane electrode based on nickel(II) tetrazaannulene macrocyclic complex. Analyst (Lond.) 122, 1143–1147 (1997). doi: 10.1039/a700544j CrossRefGoogle Scholar
  22. 22.
    Badr, I.H.A., Meyerhoff, M.E.: Highly selective single-use fluoride ion optical sensor based on aluminum(III)–salen complex in thin polymeric film. Anal. Chim. Acta 553, 169–176 (2005). doi: 10.1016/j.aca.2005.08.037 CrossRefGoogle Scholar
  23. 23.
    Xu, L., Yuan, R., Fu, Y.-Z., Chai, Y.-Q.: Potentiometric membrane electrode for salicylate based on an organotin complex with a salicylal Schiff base of amino acid. Anal. Sci. 21, 287–292 (2005). doi: 10.2116/analsci.21.287 CrossRefGoogle Scholar
  24. 24.
    Shahrokhian, S., Amini, M.K., Kia, R., Tangestaninejad, S.: Salicylate-selective electrodes based on AI(III) and Sn(IV) salophens. Anal. Chem. 72, 956–962 (2000). doi: 10.1021/ac990749w CrossRefGoogle Scholar
  25. 25.
    Dai, J.Y., Chai, Y.Q., Yuan, R., Zhang, Y.S., Liu, Y., Zhong, X., Tang, D.P.: Thiocyanate-selective PVC membrane electrode based on tricoordinate Schiff base copper(II) complex. Chem. Lett. 34, 62–63 (2005). doi: 10.1246/cl.2005.62 CrossRefGoogle Scholar
  26. 26.
    Zhao, Q., Yuan, R., Chai, Y., Xu, L., Chen, J., Zhang, Z.: Binuclear Schiff base complex of manganese(III) as a neutral carrier for a highly selective iodide electrode. Anal. Sci. 23, 1331–1335 (2007). doi: 10.2116/analsci.23.1331 CrossRefGoogle Scholar
  27. 27.
    Wu, X., Chai, Y.Q., Yuan, R., Ye, G.R., Zhou, W.: Highly selective thiocyanate electrode based on bis-bebzion Schiff base binuclear copper(II) complex as neutral carrier. Anal. Lett. 41, 890–901 (2008). doi: 10.1080/00032710801934908 CrossRefGoogle Scholar
  28. 28.
    Blikova, Y.N., Shvedene, N.V., Pletnev, I.V.: Binuclear copper(II) phthalocyanate as a ionophore for membrane anion-selective electrodes. J. Anal. Chem. 57, 940–944 (2002). doi: 10.1023/A:1020435311223 CrossRefGoogle Scholar
  29. 29.
    Yuan, R., Wang, X.L., Ua, L.X., Chai, Y.Q., Sun, Z.Y., Huang, X.Q., Li, Q.F., Zhao, Q., Zhou, L.: A highly selective thiocyanate electrode based on bis-bebzoin-semi triethylenetetraamine binuclear copper(II) complex as neutral carrier. Electrochem. Commun. 5, 717–721 (2003). doi: 10.1016/S1388-2481(03)00171-1 CrossRefGoogle Scholar
  30. 30.
    Amini, M.K., Mazloum, M., Ensafi, A.A.: Lead selective membrane electrode using cryptand (222) neutral carrier. Fresenius J. Anal. Chem. 364, 690–693 (1999). doi: 10.1007/s002160051415 CrossRefGoogle Scholar
  31. 31.
    Pouretedal, H.R., Shamsipur, M.A.: PVC-based cryptand C2B22 membrane potentiometric sensor for zinc (II). Fresenius J. Anal. Chem. 362, 415–418 (1998). doi: 10.1007/s002160051096 CrossRefGoogle Scholar
  32. 32.
    Patel, B., Kumar, A., Menon, S. K.: Mercury selective membrane electrode based on dithio derivatized macrotricyclic compound. J. Incl. Phenom. Macrocycl. Chem. (2009, in press) (JIPH809R1)Google Scholar
  33. 33.
    Umezawa, Y., Umezawa, K., Sato, H.: Selectivity coefficients for ion-selective electrodes recommended methods for reporting Kpot values. Pure Appl. Chem. 67, 507–518 (1995). doi: 10.1351/pac199567030507 CrossRefGoogle Scholar
  34. 34.
    Lahti, M., Vilpo, J., Hovinen, J.: Spectrophotometric determination of thiocyanate in human saliva. J. Chem. Educ. 76, 1281–1282 (1999)CrossRefGoogle Scholar
  35. 35.
    Brown, D.V., Chaniotakis, N.A., Lee, I.H., Ma, S.C., Park, S.B., Meyerhoff, M.E., Nick, R.J., Groves, J.T.: Mn(III)-porphyrin-based thiocyanate-selective membrane electrode: characterization and application in flow injection determination of thiocyanate in saliva. Electroanalysis 1, 477–484 (1989). doi: 10.1002/elan.1140010602 CrossRefGoogle Scholar
  36. 36.
    Bart, T.Y., Valiotti, A.B., Sikorova, I.A., Shashkina, I.V.J.: Appl. Chem. USSR 65, 446 (1992)Google Scholar
  37. 37.
    Amini, M.K., Shahrokian, S., Tangestaninejad, S.: PVC-based cobalt and manganese phthalocyanine coated graphite electrodes for determination of thiocyanate. Anal. Lett. 32, 2737–2750 (1999). doi: 10.1080/00032719908543002 CrossRefGoogle Scholar
  38. 38.
    El-Aamrani, F.Z., Raurich, J.G., Sastre, A., Beyer, L., Florido, A.: PVC membranes based on silver(I)-thiourea complexes. Anal. Chim. Acta 402, 129–135 (1999). doi: 10.1016/S0003-2670(99)00562-0 CrossRefGoogle Scholar
  39. 39.
    Hassan, S.S.M., Ghalia, M.H.A., Amr, A.E., Mohamed, A.H.K.: Novel thiocyanate-selective membrane sensors based on di-, tetra-, and hexaimidepyridine ionophores. Anal. Chim. Acta 482, 9–18 (2003). doi: 10.1016/S0003-2670(03)00172-7 CrossRefGoogle Scholar
  40. 40.
    Sun, Z.Y., Yuan, R., Chai, Y.Q., Xu, L., Gan, X.X., Xu, W.J.: Study of a bis-furaldehyde Schiff base copper(II) complex as carrier for preparation of highly selective thiocyanate electrodes. Anal. Bioanal. Chem. 378, 490–494 (2004). doi: 10.1007/s00216-003-2301-7 CrossRefGoogle Scholar
  41. 41.
    Poursaberi, T., Niassari, M.S., Khodabakhsh, S., Babaei, L.H., Shamsipur, M., Yousefi, M., Rouhani, S., Ganjali, M.R.: A selectivity membrane electrode for thiocyanate ion based on a cooper-1,8-dimethyl-1,3,6,8,10,13-azacyclotetradecane complex as a ionophore. Anal. Lett. 34, 2621–2632 (2001). doi: 10.1081/AL-100108409 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Bhargav Patel
    • 1
  • Anish Kumar
    • 1
  • Shobhana K. Menon
    • 1
  1. 1.Department of Chemistry, School of SciencesGujarat UniversityAhmedabadIndia

Personalised recommendations