Non-covalent strategy for activating separation and detection functionality by use of the multifunctional host molecule thiacalixarene

Review Article


This review article proposes a non-covalent strategy for activating separation and detection functionality; this strategy acts not through extensive organic synthesis to a covalently constructed molecular receptor, but by combining a simple molecular platform with a chemical “field” or functional component. For such a platform, we employed thiacalixarenes—calixarenes in which the bridging methylene groups are replaced with sulfur—to demonstrate usefulness of the non-covalent strategy and the multifunctionality of thiacalixarene. Thiacalixarene exhibits inherent abilities to recognize metal ions by coordinating with the bridging sulfur and adjacent phenol oxygen, as well as to include organic guest molecules in the cavity. Moreover, the non-covalent coupling of thiacalixarene provides systems with functions higher than thiacalixarene by itself. The functions described in this paper are as follows: (1) a 200-fold pre-concentration of heavy metal ions such as CuII, CdII, and PbII; (2) a pre-column derivatization reagent for the highly selective and sensitive determination of NiII, AlIII, FeIII, and TiIV at sub-ppb levels with reversed-phase HPLC; (3) the self-assembled formation of a luminescence receptor with TbIII ions for the detection of 10−10 M levels of 1-ethylquinolinium guest; and (4) a sensing system for 10−9 M levels of AgI ions by the formation of the AgI-TbIII-thiacalixarene ternary supramolecular complex. These examples support the non-covalent strategy as a highly promising way to obtain functions beyond that of a molecular platform. In addition, these diverse functions indicate the multifunctionality of thiacalixarene as well as its suitability to the non-covalent strategy, since the inherent functional groups—such as the bridging sulfur, phenol oxygen, p-substituent, aromatic ring, and hydrophobic cavity—synergistically perform the functions.


Non-Covalent strategy Self-assembly Supramolecular chemistry Thiacalixarene 



The author acknowledges with thanks Prof. T. Hayashita (Sophia University), the organizer and the Host-Guest and Supramolecular Chemistry Society, Japan, the organizing committee for giving him the HGCS Japan Award of Excellence 2008 and the opportunity to write this article; all the collaborators mentioned in the references. He especially acknowledges Prof. S. Miyano for his suggestions and discussions; Dr. N. Morohashi, Dr. H. Matsumiya, Dr. T. Horiuchi, Mr. M. Ohta, and Mr. T. Tanaka for their great contributions to this work; Prof. T. Kajiwara and Prof. M. Yamashita (Tohoku University) for performing the X-ray structural analysis; Prof. H. Hoshino and Prof. T. Takahashi (Tohoku University) for their useful suggestions. This study was partly supported by a Grant-in-Aid for Scientific Research (Nos. 16350039, 19027007, and 20350070) from the Japan Society for the Promotion of Science (JSPS). This article is selected for “HGCS Japan Award of Excellence 2008”.


  1. 1.
    Lehn, J.M.: Supramolecular chemistry. VCH, Weinheim (1995)CrossRefGoogle Scholar
  2. 2.
    Kubo, Y.: Chromogenic receptors: versatility of the colorimetric recognizing behavior. J. Incl. Phenom. Mol. Recognit. Chem. 32, 235–249 (1998). doi: 10.1023/A:1008067528254 CrossRefGoogle Scholar
  3. 3.
    de Silva, A.P., Nimal Gunaratne, H.Q., Gunnlaugsson, T., Huxley, A.J.M., McCoy, C.P., Rademacher, J.T., Rice, T.E.: Signaling recognition events with fluorescent sensors and switches. Chem. Rev. 97, 1515–1566 (1997). doi: 10.1021/cr960386p CrossRefGoogle Scholar
  4. 4.
    Valeur, B., Leray, I.: Design principles of fluorescent molecular sensors for cation recognition. Coord. Chem. Rev. 205, 3–40 (2000). doi: 10.1016/S0010-8545(00)00246-0 CrossRefGoogle Scholar
  5. 5.
    Prodi, L., Bolletta, F., Montalti, M., Zaccheroni, N.: Luminescent chemosensors for transition metal ions. Coord. Chem. Rev. 205, 59–83 (2000). doi: 10.1016/S0010-8545(00)00242-3 CrossRefGoogle Scholar
  6. 6.
    Bünzli, J.-C.G.: Rare earth luminescent centers in organic and biochemical compounds. Springer Ser. Mater. Sci. 83, 462–499 (2005). doi: 10.1007/3-540-28209-2_9 CrossRefGoogle Scholar
  7. 7.
    Rogers, C.W., Wolf, M.O.: Luminescent molecular sensors based on analyte coordination to transition-metal complexes. Coord. Chem. Rev. 233–234, 341–350 (2002). doi: 10.1016/S0010-8545(02)00023-1 CrossRefGoogle Scholar
  8. 8.
    Morozumi, T., Shinkai, S.: A novel “reading-out” system for amino acid chirality with induced chirality in water-soluble calix[n]arenes. Chem. Lett. 23, 1515–1518 (1994). doi: 10.1246/cl.1994.1515 CrossRefGoogle Scholar
  9. 9.
    Morozumi, T., Shinkai, S.: Induced circular dichroism detection of chiral ammonium guests through inclusion in calix[n]arene cavities. J. Chem. Soc. Chem. Commun. 1994, 1219–1220 (1994). doi: 10.1039/c39940001219 CrossRefGoogle Scholar
  10. 10.
    Beer, P.D., Cadman, J.: Electrochemical and optical sensing of anions by transition metal based receptors. Coord. Chem. Rev. 205, 131–155 (2000). doi: 10.1016/S0010-8545(00)00237-X CrossRefGoogle Scholar
  11. 11.
    Snowden, T.S., Anslyn, E.V.: Anion recognition: synthetic receptors for anions and their application in sensors. Curr. Opin. Chem. Biol. 3, 740–746 (1999). doi: 10.1016/S1367-5931(99)00034-4 CrossRefGoogle Scholar
  12. 12.
    Beer, P.D., Gale, P.A., Chen, G.Z.: Electrochemical molecular recognition: pathways between complexation and signaling. J. Chem. Soc., Dalton Trans. 1999, 1897–1910 (1999). doi: 10.1039/a901462d CrossRefGoogle Scholar
  13. 13.
    Beer, P.D., Gale, P.A., Chen, Z.: Electrochemical recognition of charged and neutral guest species by redox-active receptor molecules. Adv. Phys. Org. Chem. 31, 1–90 (1998). doi: 10.1016/S0065-3160(08)60192-6 CrossRefGoogle Scholar
  14. 14.
    Kim, J.S., Quang, D.T.: Calixarene-derived fluorescent probes. Chem. Rev. 107, 3780–3799 (2007). doi: 10.1021/cr068046j CrossRefGoogle Scholar
  15. 15.
    Ungaro, R., Arduini, A., Casnati, A., Pochini, A., Ugozzoli, F.: New synthetic receptors based on calix[4]arenes for the selective recognition of ions and neutral molecules. Pure Appl. Chem. 68, 1213–1218 (1996). doi: 10.1351/pac199668061213 CrossRefGoogle Scholar
  16. 16.
    Diamond, D.: Calixarene based sensing agents. J. Incl. Phenom. Mol. Recognit. Chem. 19, 149–166 (1994). doi: 10.1007/BF00708980 CrossRefGoogle Scholar
  17. 17.
    Ueno, A.: Fluorescent cyclodextrins for molecule sensing. Supramol. Sci. 3, 31–36 (1996). doi: 10.1016/0968-5677(96)00016-8 CrossRefGoogle Scholar
  18. 18.
    Gokel, G.W., Leevy, W.M., Weber, M.E.: Crown ethers: sensors for ions and molecular scaffolds for materials and biological models. Chem. Rev. 104, 2723–2750 (2004). doi: 10.1021/cr020080k CrossRefGoogle Scholar
  19. 19.
    Iki, N., Miyano, S.: Can thiacalixarene surpass calixarene? J. Incl. Phenom. Macrocycl. Chem. 41, 99–105 (2001). doi: 10.1023/A:1014406709512 CrossRefGoogle Scholar
  20. 20.
    Morohashi, N., Narumi, F., Iki, N., Hattori, T., Miyano, S.: Thiacalixarenes. Chem. Rev. 106, 5291–5316 (2006)CrossRefGoogle Scholar
  21. 21.
    Lhoták, P.: Chemistry of thiacalixarenes. Eur. J. Org. Chem.2004, 1675–1692 (2004) doi: 10.1002/ejoc.200300492)
  22. 22.
    Gutsche, C.D.: Calixarenes. The Royal Society of Chemistry, Cambridge (1989)Google Scholar
  23. 23.
    Kumagai, H., Hasegawa, M., Miyanari, S., Sugawa, Y., Sato, Y., Hori, T., Ueda, S., Kamiyama, H., Miyano, S.: Facile synthesis of p-tert-butylthiacalix[4]arene by the reaction of p-tert-butylphenol with elemental sulfur in the presence of a base. Tetrahedron Lett. 38, 3971–3972 (1997). doi: 10.1016/S0040-4039(97)00792-2 CrossRefGoogle Scholar
  24. 24.
    Iki, N., Kumagai, H., Morohashi, N., Ejima, K., Hasegawa, M., Miyanari, S., Miyano, S.: Selective oxidation of thiacalix[4]arenes to the sulfinyl- and sulfonylcalix[4]arenes and their coordination ability to metal ions. Tetrahedron Lett. 39, 7559–7582 (1998). doi: 10.1016/S0040-4039(98)01645-1 CrossRefGoogle Scholar
  25. 25.
    Katagiri, H., Iki, N., Hattori, T., Kabuto, C., Miyano, S.: Calix[4]arenes comprised of aniline units. J. Am. Chem. Soc. 123, 779–780 (2001). doi: 10.1021/ja005573q CrossRefGoogle Scholar
  26. 26.
    Böhmer, V.: Calixarenes, macrocycles with (almost) unlimited possibilities. Angew. Chem. Int. Ed. Engl. 34, 713–745 (1995). doi: 10.1002/anie.199507131 CrossRefGoogle Scholar
  27. 27.
    Gutsche, C.D.: Calixarenes revisited. The Royal Society of Chemistry, Cambridge (1998)Google Scholar
  28. 28.
    Böhmer, V., Vicens, J. (eds.): Calixarenes: a versatile class of macrocyclic compounds. Kluwer Academic Publishers, Dordrecht, The Netherlands (1991)Google Scholar
  29. 29.
    Asfari, Z., Böhmer, V., Harrowfield, J., Vicens, J. (eds.): Calixarenes 2001. Kluwer Academic Publishers, Dordrecht (2001)Google Scholar
  30. 30.
    Asfari, Z., Harrowfield, J., Vicens, J. (eds.): Calixarenes 50th anniversary: commemorative volume. Kluwer Academic Publishers, Dordrecht, The Netherlands (1994)Google Scholar
  31. 31.
    Lumetta, G.J., Rogers, R.D., Gopalan, A.S.: Calixarenes for separations Acs Symposium Series 757. American Chemical Society, Washington (2000)Google Scholar
  32. 32.
    Mandolini, L., Ungaro, R.: Calixarenes in action. Imperial College Press, London (2000)Google Scholar
  33. 33.
    Harrowfield, J.M., Ogden, M.I., Richmond, W.R., White, A.H.: Calixarene-cupped caesium: a coordination conundrums? J. Chem. Soc., Chem. Commun. 1991, 1159–1161 (1991). doi: 10.1039/C39910001159 CrossRefGoogle Scholar
  34. 34.
    Izatt, S.R., Hawkins, R.T., Christensen, J.J., Izatt, R.M.: Cation transport from multiple alkali cation mixtures using a liquid membrane system containing a series of calixarene carriers. J. Am. Chem. Soc. 107, 63–66 (1985)CrossRefGoogle Scholar
  35. 35.
    Izatt, R.M., Lamb, J.D., Hawkins, R.T., Brown, P.R., Izatt, S.R., Christensen, J.J.: Selective M+-H+ coupled transport of cations through a liquid membrane by macrocyclic calixarene ligands. J. Am. Chem. Soc. 105, 1782–1785 (1983)CrossRefGoogle Scholar
  36. 36.
    Iki, N., Morohashi, N., Narumi, F., Miyano, S.: High complexation ability of thiacalixarene to transition metal ions. the effect of replacing methylene bridges of tetra(p-t-butyl)calix[4]arenetetrol by epithio groups. Bull. Chem. Soc. Jpn. 71, 1597–1603 (1998). doi: 10.1246/bcsj.71.1597 CrossRefGoogle Scholar
  37. 37.
    Iki, N., Morohashi, N., Kabuto, C., Miyano, S.: Coordination of epithio groups of p-tert-butylthiacalix[4]arene in the Zn2+ complex studied by X-ray crystallography. Chem. Lett. 28, 219–220 (1999). doi: 10.1246/cl.1999.219 CrossRefGoogle Scholar
  38. 38.
    Morohashi, N., Iki, N., Sugawara, A., Miyano, S.: Selective oxidation of thiacalix[4]arenes to the sulfinyl and sulfonyl counterparts and their complexation abilities toward metal ions as studied by solvent extraction. Tetrahedron 57, 5557–5563 (2001). doi: 10.1016/S0040-4020(01)00482-3 CrossRefGoogle Scholar
  39. 39.
    Kajiwara, T., Iki, N., Yamashita, M.: Transition metal and lanthanide cluster complexes constructed with thiacalix[n]arene and its derivatives. Coord. Chem. Rev. 251, 1734–1746 (2007). doi: 10.1016/j.ccr.2007.01.001 CrossRefGoogle Scholar
  40. 40.
    Iki, N., Kabuto, C., Fukushima, T., Kumagai, H., Takeya, H., Miyanari, S., Miyashi, T.S., Miyano, S.: Synthesis of p-tert-butylthiacalix[4]arene and its inclusion property. Tetrahedron 56, 1437–1443 (2000). doi: 10.1016/S0040-4020(00)00030-2 CrossRefGoogle Scholar
  41. 41.
    Iki, N., Fujimoto, T., Miyano, S.: A new water-soluble host molecule derived from thiacalixarene. Chem. Lett. 27, 625–626 (1998). doi: 10.1246/cl.1998.625 CrossRefGoogle Scholar
  42. 42.
    Kon, N., Iki, N., Sano, Y., Ogawa, S., Kabuto, C., Miyano, S.: Tuning of the cavity of water-soluble thiacalix[4]arene for the control of inclusion ability toward water-miscible organic molecules. Collect. Czech. Chem. Commun. 69, 1080–1096 (2004). doi: 10.1135/cccc20041080 CrossRefGoogle Scholar
  43. 43.
    Iki, N., Suzuki, T., Koyama, K., Kabuto, C., Miyano, S.: Inclusion behavior of thiacalix[4]arenetetrasulfonate toward water-miscible organic molecules studied by salt-out and x-ray crystallography. Org. Lett. 4, 509–512 (2002). doi: 10.1021/ol017053l CrossRefGoogle Scholar
  44. 44.
    Kon, N., Iki, N., Miyano, S.: Inclusion behavior of water-soluble thiacalix- and calix[4]arenes for substituted benzenes in aqueous solution. Org. Biomol. Chem. 1, 751–755 (2003). doi: 10.1039/b210198j CrossRefGoogle Scholar
  45. 45.
    Iki, N., Ogawa, S., Matsue, T., Miyano, S.: Voltammetric study of inclusion of p-sulfonated thiacalix[n]arenes (n = 4, 6) toward ferrocenyl guests in aqueous solutions. J. Electroanal. Chem. 610, 90–95 (2007). doi: 10.1016/j.jelechem.2007.06.023 CrossRefGoogle Scholar
  46. 46.
    Matsumiya, H., Masai, H., Terazono, Y., Iki, N., Miyano, S.: Chelating adsorbent for heavy metal ions prepared by loading anion-exchange resin with thiacalix[4]arenetetrasulfonate. Bull. Chem. Soc. Jpn. 76, 133–136 (2003). doi: 10.1246/bcsj.76.133 CrossRefGoogle Scholar
  47. 47.
    Matsumiya, H., Iki, N., Miyano, S., Hiraide, M.: Pre-concentration of copper, cadmium, and lead with a thiacalix[4]arenetetrasulfonateloaded Sephadex A–25 anion-exchanger for graphite-furnace atomic absorption Spectrometry. Anal. Bioanal. Chem. 379, 867–871 (2004). doi: 10.1007/s00216-004-2655-5 CrossRefGoogle Scholar
  48. 48.
    Matsumiya, H., Ishida, T., Iki, N., Miyano, S.: Thiacalix[4]arenetetrasulfonate as specific pre-column chelating reagent for nickel(II) ion in kinetic differentiation mode high-performance liquid chromatography. Anal. Chim. Acta 478, 163–170 (2003). doi: 10.1016/S0003-2670(02)01516-7 CrossRefGoogle Scholar
  49. 49.
    Matsumiya, H., Iki, N., Miyano, S.: Sulfonylcalix[4]arenetetrasulfonate as pre-column chelating reagent for selective determination of aluminum(III), iron(III), and titanium(IV) by ion-pair reversed-phase high-performance liquid chromatography with spectrophotometric detection. Talanta 62, 337–342 (2004). doi: 10.1016/j.talanta.2003.08.001 CrossRefGoogle Scholar
  50. 50.
    Horiuchi, T., Iki, N., Hoshino, H.: Detection of cationic guest molecules by quenching of luminescence of a self-assembled host molecule consisting of TbIII and calix[4]arene-p-tetrasulfonates, New J. Chem. (Submitted)Google Scholar
  51. 51.
    Iki, N., Ohta, M., Tanaka, T., Horiuchi, T., Hoshino, H.: A supramolecular sensing system for AgI at nanomolar levels by formation of luminescent AgI-TbIII-thiacalix[4]arene ternary complex, New. J. Chem. 33, 23–35 (2009). doi: 10.1039/b816596c Google Scholar
  52. 52.
    Matsumiya, H., Yasuno, S.: Nobuhiko Iki, N., Miyano, S.: Sulfinylcalix[4]arene-impregnated Amberlite XAD–7 resin for the separation of niobium(V) from tantalum(V). J. Chromatogr. A 1090, 197–200 (2005). doi: 10.1016/j.chroma.2005.06.086 CrossRefGoogle Scholar
  53. 53.
    Ghidini, E., Ugozzoli, F., Ungaro, R., Harkema, S.: Abu El-Fadl, A., Reinhoudt D. N.: Complexation of alkali metal cations by conformationally rigid, stereoisomeric calix[4]arene crown ethers: a quantitative evaluation of preorganization. J. Am. Chem. Soc. 112, 6979–6985 (1990)CrossRefGoogle Scholar
  54. 54.
    Yamamoto, H., Shinkai, S.: Molecular design of calix[4]arene-based sodium-selective electrodes which show remarkably high 105.0–105.3 sodium/potassium selectivity. Chem. Lett. 23, 1115–1118 (1994)CrossRefGoogle Scholar
  55. 55.
    Iki, N., Hoshino, H., Yotsuyanagi, T.: 2-Pyridylaldehydebenzoylhydrazone derivatives as highly selective precolumn chelating reagents for nickel(II) ion in kinetic differentiation mode high-performance liquid chromatography. Mikrochim. Acta 113, 137–152 (1994). doi: 10.1007/BF01243607 Google Scholar
  56. 56.
    Kido, J., Okamoto, Y.: Organo lanthanide metal complexes for electroluminescent materials. Chem. Rev. 102, 2357–2368 (2002)CrossRefGoogle Scholar
  57. 57.
    de Bettencourt-Dias, A. Lanthanide-based emitting materials in light-emitting diodes. Dalton Trans. 2007, 2229–2241 (2007)Google Scholar
  58. 58.
    Kuriki, K., Koike, Y., Okamoto, Y.: Plastic optical fiber lasers and amplifiers containing lanthanide complexes. Chem. Rev. 102, 2347–2356 (2002)CrossRefGoogle Scholar
  59. 59.
    Hemmilä, I., Laitala, V.: Progress in lanthanides as luminescent probes. J. Fluoresc. 15, 529–542 (2005)CrossRefGoogle Scholar
  60. 60.
    Yuan, J., Wang, G.: Lanthanide complex-based fluorescence label for time-resolved fluorescence bioassay. J. Fluoresc. 15, 559–568 (2005)CrossRefGoogle Scholar
  61. 61.
    Brunet, E., Juanes, O., Rodriguez-Ubis, J.C.: Supramolecularly organized lanthanide complexes for efficient metal excitation and luminescence as sensors in organic and biological applications. Curr. Chem. Biol. 1, 11–39 (2007)CrossRefGoogle Scholar
  62. 62.
    Sabbatini, N., Guardigli, M., Manet, I., Ziessel, R.: Luminescent probes. In: Asfari, Z., Böhmer, V., Harrowfield, J., Vicens, J., (eds.) Calixarenes 2001. Kluwer Academic Publishers, Dordrecht, Chap. 31, pp. 583–597 (2001)Google Scholar
  63. 63.
    Iki, N., Horiuchi, T., Oka, H., Koyama, K., Morohashi, N., Kabuto, C., Miyano, S.: Energy transfer luminescence of Tb3+ ion complexed with calix[4]arenetetrasulfonate and the thia and sulfonyl analogue. The effect of bridging groups. J. Chem. Soc., Perkin Trans. 2 2001, 2219–2225 (2001). doi: 10.1039/b009151k CrossRefGoogle Scholar
  64. 64.
    Horiuchi, T., Iki, N., Oka, H., Miyano, S.: Highly selective luminescence determination of terbium at sub-ppb level with sulfonylcalix[4]arene-p-tetrasulfonate. Bull. Chem. Soc. Jpn. 75, 2615–2619 (2002). doi: 10.1246/bcsj.75.2615 CrossRefGoogle Scholar
  65. 65.
    Mancin, F., Rampazzo, E., Paolo Tecilla, P., Tonellato, U.: Self-assembled fluorescent chemosensors. Chem. Eur. J. 12, 1844–1854 (2006)CrossRefGoogle Scholar
  66. 66.
    Yang, H., Chan, W.H., Lee, A.W.M., Xia, P.F., Zhang, H.K., Li, K.: A ratiometric fluorescent sensor for AgI with high selectivity and sensitivity. J. Am. Chem. Soc. 125, 2884–2885 (2003)CrossRefGoogle Scholar
  67. 67.
    Iki, N., Ohta, M., Horiuchi, T., Hoshino, H.: Exceptionally long-lived luminescence emitted from TbIII ion caged in an AgI-TbIII-thiacalix[4]arene supramolecular complex in water. Chem. Asian J. 3, 849–853 (2008). doi: 10.1002/asia.200700298 CrossRefGoogle Scholar
  68. 68.
    Tanaka, T., Iki, N., Kajiwara, T., Yamashita, M., Hoshino, H.: One-step heterogeneous assembly of terbium(III) and silver(I) with thiacalix[4]arene ligands to form a cage including terbium(III) in an octa-oxygen cube, J. Incl. Phenom. Macrocycl. Chem. (Submitted)Google Scholar
  69. 69.
    Tong, H., Wang, L., Jing, X., Wang, F.: Highly selective fluorescent chemosensor for silver(I) ion based on amplified fluorescence quenching of conjugated polyquinoline. Macromolecules 35, 7169–7171 (2002)Google Scholar
  70. 70.
    Raker, J., Glass, T.E.: Cooperative ratiometric chemosensors: pinwheel receptors with an integrated fluorescence system. J. Org. Chem. 66, 6505–6512 (2001)CrossRefGoogle Scholar
  71. 71.
    Ingle, J.D., Crouch, S.R.: Spectrochemical analysis. Prentice Hall, Englewood Cliffs, NJ (1988)Google Scholar
  72. 72.
    Anslyn, E. V.: Supramolecular analytical chemistry. J. Org. Chem. 72, 687–699 (2007)Google Scholar
  73. 73.
    Hayashita, T., Yamauchi, A., Tong, A.J., Lee, J.C., Smith, B.D., Teramae, N.: Design of supramolecular cyclodextrin complex sensors for ion and molecule recognition in water. J. Incl. Phenom. Macrocycl. Chem. 50, 87–94 (2004)Google Scholar
  74. 74.
    Nguyen, B.T., Anslyn, E.V.: Indicator-displacement assays. Coord. Chem. Rev. 250, 3118–3127 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Graduate School of Environmental StudiesTohoku UniversitySendaiJapan

Personalised recommendations