Raman spectroscopy is a convenient technique for the efficient evaluation of cyclodextrin inclusion molecular complexes of azo-dye colorants and largely polarisable guest molecules

  • Aldo Arrais
  • Piero Savarino
Original Article


Raman spectroscopy has been successfully employed in order to investigate the formation of β-cyclodextrin host–guest inclusion molecular complexes with several different azo-dye structures. The Raman pattern of the carbohydrate framework results negligible when neared to the magnificent intensity of the highly polarisable guest systems and a complete and feasible comparison of the spectral features between the free and the complexed situation of the guest molecule is allowed. In general, with respect to the free guest state, it was found within the complex that a hampering of Raman intensity displays, accompanied by a levelling directed variation of the relative peak intensities, and peculiar Raman peak broadening with shifts occur, relatable to the host–guest settling of inclusive intermolecular interactions. Supportively to the other commonly established characterising methods, or in valid alternative, Raman technique has proved astoundingly useful under the perspective of the diagnostic evaluation of cyclodextrin host–guest molecular inclusion for azo-dyes and, more generally, for a highly polarisable guest structure. It features sample non-destructivity, handiness, fastness and sensitive reproducibility, occasionally providing useful suggestions about the complexation topology.


β-Cyclodextrin Azo-dyes Host–guest inclusion phenomena Raman spectroscopy 



Signature A. A. indebted acknowledges Professor Pier Luigi Stanghellini (University of Eastern Piedmont, Italy) for nearing him to Raman spectroscopy. Authors appreciated the valuable comments provided by two anonymous Reviewers. Wacker-Chemie Ltd. is thankfully acknowledged for the kind supply of a β-cyclodextrin sample. Work was gratefully funded by public Fondo Ricerca Locale of the Italian Ministero dell’Istruzione, dell’Università e della Ricerca (M.I.U.R).


  1. 1.
    Pluth, M.D., Raymond, K.N.: Reversible guest exchange mechanisms in supramolecular host–guest assemblies. Chem. Soc. Rev. 36, 161–171 (2007). doi: 10.1039/b603168b CrossRefGoogle Scholar
  2. 2.
    Del Valle, E.M.M.: Cyclodextrines and their uses: a review. Process Biochem 39, 1033–1046 (2004). doi: 10.1016/S0032-9592(03)00258-9 CrossRefGoogle Scholar
  3. 3.
    Hedges, A.L.: Industrial applications of cyclodextrines. Chem. Rev. 98, 2035–2044 (1998). doi: 10.1021/cr970014w CrossRefGoogle Scholar
  4. 4.
    Challa, R., Ahuja, A., Ali, J., Khar, R.K.: Cyclodextrines in drug delivery: An updated Review. AAPS PharmSciTech 6, E329–E357 (2005)CrossRefGoogle Scholar
  5. 5.
    Savarino, P., Viscardi, G., Quagliotto, P., Montoneri, E., Barni, E.: Reactivity and effects of cyclodextrins in textile dyeing. Dyes Pigments 42, 143–147 (1999). doi: 10.1016/S0143-7208(99)00004-2 CrossRefGoogle Scholar
  6. 6.
    Scheneider, H.J., Hacket, F., Rudiger, V., Ikeda, H.: NMR studies of cyclodextrins and cyclodextrin complexes. Chem. Rev. 98, 1755–1785 (1998). doi: 10.1021/cr970019t CrossRefGoogle Scholar
  7. 7.
    Tatsuno, H., Ando, S.: Structure and dynamics of perfluoroalkane/beta-cyclodextrin inclusion compounds as studied by solid-state F-19 MAS and H-1 → F-19 CP/MAS NMR spectroscopy. J. Phys. Chem. B 110, 25751–25760 (2006). doi: 10.1021/jp064579k CrossRefGoogle Scholar
  8. 8.
    Cunha-Silva, L., Teixeira-Dias, J.J.C.: Solid-state inclusion compounds of small amphiphilic molecules (CnEm) in beta-cyclodextrin: A study at defined relative humidities. New J. Chem. 29, 1335–1341 (2005). doi: 10.1039/b507215h CrossRefGoogle Scholar
  9. 9.
    Landau, R.N.: Expanding the role of reaction calorimetry. Thermochim. Acta 289, 101–126 (1996). doi: 10.1016/S0040-6031(96)03081-X CrossRefGoogle Scholar
  10. 10.
    Braga, S.S., Goncalves, I.S., Herdtweck, E., Teixeira-Dias, J.J.C.: Solid state inclusion compound of S-ibuprofen in beta-cyclodextrin: Structure and characterisation. N. J. Chem. 27, 597–601 (2003). doi: 10.1039/b207272f CrossRefGoogle Scholar
  11. 11.
    Lamcharfi, E., Kunesch, G., Meyer, C., Robert, B.: Investigation of cyclodextrin inclusion compounds using FT-IR and Raman spectroscopy. Spectrochim. Acta Pt. A Mol. Biomol. Spectr. 51, 1861–1870 (1995). doi: 10.1016/0584-8539(95)01428-W CrossRefGoogle Scholar
  12. 12.
    Egyed, O.: Spectroscopic studies on beta-cyclodextrins. Vib. Spectrosc. 1, 225–227 (1990). doi: 10.1016/0924-2031(90)80041-2 CrossRefGoogle Scholar
  13. 13.
    Bertoluzza, A., Rossi, M., Taddei, P., Redenti, E., Zanol, M., Ventura, P.: FT-Raman and FT-IR studies of 1:2.5 piroxicam:beta-cyclodextrin inclusion compound. J. Mol. Struct. 481, 535–539 (1999). doi: 10.1016/S0022-2860(98)00734-0 CrossRefGoogle Scholar
  14. 14.
    Maeda, Y., Kitano, H.: Inclusional complexation by cyclodextrins at the surface of silver as evidenced by Surface-Enhanced Resonance Raman Spectroscopy. J. Phys. Chem. 99, 487–488 (1995). doi: 10.1021/j100002a004 CrossRefGoogle Scholar
  15. 15.
    Johri, S., Varshney, H.: Synthesis of some new disperse dyes. J. Indian Chem. Soc. 73, 629–630 (1996)Google Scholar
  16. 16.
    Fedorov, L.A., Savarino, P., Dostovalova, V.I., Viscardi, G., Carpignano, R., Barni, E.: H-1-NMR spectra of a series of disperse azo-dyes. Magn. Reson. Chem. 29, 747–748 (1991). doi: 10.1002/mrc.1260290721 CrossRefGoogle Scholar
  17. 17.
    Bridgeman, I., Peters, A.T.: Synthesis and electronic spectra of some 4-aminoazobenzenes. J. Soc. Dyers Colour. 86, 519–521 (1970)Google Scholar
  18. 18.
    Matsui, M., Kawase, R., Funabiki, K., Muramatsu, H., Shibata, K.: Perfluoroalkylsulphonyl-substituted azobenzenes as second-order nonlinear optical chromophores. Bull. Chem. Soc. Jpn. 70, 3153–3158 (1997). doi: 10.1246/bcsj.70.3153 CrossRefGoogle Scholar
  19. 19.
    Komach, L.D., Zinchenkov, Y.Y., Rodionova, G.N., Karpov, V.V., Popov, E.V.: IR spectroscopy for dispersed-dye polimorphs. J. Appl. Chem. U.S.S.R. 63, 1502–1504 (1990)Google Scholar
  20. 20.
    Bassignana, P., Cogrossi, E.: Absorption Ir du group –N=N– en colorant azoïques. Tetrahedron 20, 2361–2363 (1964). doi: 10.1016/S0040-4020(01)90816-6 CrossRefGoogle Scholar
  21. 21.
    Sigman, M.E., Leffler, J.E.: Supercritical carbon dioxide. The cis to trans relaxation and the π, π* of the 4-(diethylamino)–4′-nitroazobenzene. J. Org. Chem. 52, 3123–3126 (1987). doi: 10.1021/jo00390a030 CrossRefGoogle Scholar
  22. 22.
    Bortolus, P., Monti, S., Albini, A., Fasani, E., Pietra, S.: Physical quenching and chemical reaction of singlet molecular dioxygen with azo dyes. J. Org. Chem. 54, 534–540 (1989). doi: 10.1021/jo00264a006 CrossRefGoogle Scholar
  23. 23.
    Albini, A., Fasani, E., Moroni, M., Pietra, S.: Photochemical decomposition of 4-arylazo- and 4-arylazoxy-N,N-dialkylanyline N-oxides. J. Chem. Soc. Perkin Trans. 2, 1439–1444 (1986) doi: 10.1039/p29860001439 Google Scholar
  24. 24.
    Haessner, C., Mustroph, H.: Untersuchungen zum UV/VIS-spektralverhalten von Azofarbstoffen. XVIII. Substituenteinflusse auf die Absorptionmaxima der n → π und π → π*-Banden von 4-N,N-Diethylaminoazobenzenen. J. Prakt. Chem. 329, 493–498 (1987). doi: 10.1002/prac.19873290316 CrossRefGoogle Scholar
  25. 25.
    Park, K.H., Twig, R.J., Ravikiran, R., Rhodes, L.F., Shick, R.A., Yankelevich, D., Knoesen, A.: Synthesis and nonlinear-optical properties of vinyl-addition poly(norbornene)s. Macromolecules 37, 5163–5178 (2004). doi: 10.1021/ma040044i CrossRefGoogle Scholar
  26. 26.
    Lee, M.J., Piao, M.G., Yeong, M.Y., Lee, S.H., Kang, K.M., Yeo, S.J., Lim, T.G., Cho, B.R.: Novel azo octupoles with large first hyperpolarizabilities. J. Mater. Chem. 13, 1030–1037 (2003). doi: 10.1039/b300777d CrossRefGoogle Scholar
  27. 27.
    Ho, M.S., Natansohn, A., Barrett, C., Rochon, P.: Azo molecules for reversible optical storage. 8. The effect of polarity of the azobenzene groups. Can. J. Chem. 73, 1773–17778 (1995). doi: 10.1139/v95-218 CrossRefGoogle Scholar
  28. 28.
    Zemskov, A.V., Rodionova, G.N., Tuchin, Y.G., Karpov, V.V.: IR spectra and structure of some azo dyes–p-benzene derivatives–in various aggregate states. J. Appl. Spectrosc. 49, 1020–1024 (1988). doi: 10.1007/BF00657220 CrossRefGoogle Scholar
  29. 29.
    Simova, S., Radeglia, R., Fanghaenel, E.: 1, 2, 3-Triazabutadiene. XV. Einfluß der Substituenten auf die 15N- und 13C-chemischen Verschiebungen in Triazabutadienen und Azobenzenen. J. Prakt. Chem. 324, 777–786 (1982). doi: 10.1002/prac.19823240511 CrossRefGoogle Scholar
  30. 30.
    Parlati, S., Barolo, C., Gobetto, R., Arrais, A., Buscaino, R., Medana, C., Savarino, P.: Preparation and application of a β-cyclodextrin-disperse/reactive dye complex. J. Incl. Phenom. Macrocycl. Chem. 57, 463–470 (2007). doi: 10.1007/s10847-006-9235-6 CrossRefGoogle Scholar
  31. 31.
    Savarino, P., Parlati, S., Buscaino, R., Piccinini, P., Degani, I., Barni, E.: Effects of additives on the dyeing of polyamide fibres. Part I: β-cyclodextrin. Dyes Pigments 60, 223–232 (2004). doi: 10.1016/S0143-7208(03)00142-6 CrossRefGoogle Scholar
  32. 32.
    Savarino, P., Parlati, S., Buscaino, R., Piccinini, P., Barolo, C., Montoneri, E.: Effects of additives on the dyeing of polyamide fibres. Part II: Methyl-β-cyclodextrin. Dyes Pigments 69, 7–12 (2006). doi: 10.1016/j.dyepig.2005.02.003 CrossRefGoogle Scholar
  33. 33.
    Torne, J.S., Vavia, P.R.: Inclusion complexation of anti-HIV drug with beta-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 56, 253–259 (2006). doi: 10.1007/s10847-006-9092-3 CrossRefGoogle Scholar
  34. 34.
    Polavarapu, P.L.: Ab initio vibrational Raman and Raman optical activity spectra. J. Phys. Chem. 94, 8106–8112 (1990). doi: 10.1021/j100384a024 CrossRefGoogle Scholar
  35. 35.
    Krishnakumar, V., Keresztury, G., Sundius, T., Ramasamy, R.: Simulation of IR and Raman spectra based on scaled DFT force fields: a case study of 2-(methylthio)benzonitrile, with emphasis on band assignment. J. Mol. Struct. 702, 9–21 (2004). doi: 10.1016/j.molstruc.2004.06.004 CrossRefGoogle Scholar
  36. 36.
    Williams, S.D., Johnson, T.J., Gibbson, T.P., Kitchens, C.L.: Relative Raman intensities in C6H6, C6D6 and C6F6: A comparison of different computational methods. Theor. Chem. Acc. 117, 283–290 (2007). doi: 10.1007/s00214-006-0135-z CrossRefGoogle Scholar
  37. 37.
    Garcia-Zubiri, I.X., Gonzalez-Gaitano, G., Sanchez, M., Isasi, J.R.: Infrared study of solid dispersions of beta-cyclodextrin with naphtalene derivatives. J. Incl. Phenom. Macrocycl. Chem. 49, 291–302 (2004). doi: 10.1023/B:JIPH.0000048317.30909.c5 CrossRefGoogle Scholar
  38. 38.
    Wubbenhorst, M., van Turnhout, J., Klap, G., Jansen, J.C., Quintel, A., Hulliger, J.: Spontaneous polarization and orientational dynamics of polar rod-like molecules in host/guest materials. IEEE Trans. Dielectr. Electr. Insul. 7, 523–530 (2000). doi: 10.1109/94.868072 CrossRefGoogle Scholar
  39. 39.
    Rossi, B., Verrocchio, P., Villani, G., Scarduelli, G., Mancini, I., Guella, G., Rossi, F.: Vibrational dynamics of inclusion complexes by Raman scattering: an experimental and numerical study. Philos. Mag. 87, 557–567 (2007)Google Scholar
  40. 40.
    Da Silva, A.M.M., Amado, A.M., Ribeiroclaro, P.J.A., Empis, J., Teixeriadias, J.J.C.: Beta-cyclodextrin complexes of benzaldehyde, vanillin and cynnamaldeide—A Raman spectroscopic study. J. Carbohydr. Chem. 14, 677–684 (1995). doi: 10.1080/07328309508005369 Google Scholar
  41. 41.
    Efremov, E.V., Ariese, F., Mank, A.J.G., Gooijert, C.: Strong overtones and combination bands in ultraviolet resonance Raman spectroscopy. Anal. Chem. 78, 3152–3157 (2006). doi: 10.1021/ac052253m CrossRefGoogle Scholar
  42. 42.
    Handbook of Raman Spectroscopy: from the Research Laboratory to the Process Line. Lewis, I.R., Edwards, H.G.M., Editors. Marcel Dekker, CRC Press, New York (NY). 1–1072 (2001)Google Scholar
  43. 43.
    Cong, H.P., Yu, S.H.: Recrystallization and shape control of crystals of the organic dye Acid Green 27 in a mixed solvent. Chem. Eur. J. 13, 1533–1538 (2007). doi: 10.1002/chem.200600881 CrossRefGoogle Scholar
  44. 44.
    Arrais, A., Boccaleri, E., Croce, G., Milanesio, M., Orlando, R., Diana, E.: Synthesis, structural and spectroscopic study of the donor–acceptor complexes between fluorene and D −2h cyano molecular building blocks. CrystEngComm 5, 388–394 (2003). doi: 10.1039/b308380b CrossRefGoogle Scholar
  45. 45.
    Zhang, Y.M., Yu, S.B., Bao, F.: Crystal structure of cyclomaltoheptaose (beta-cyclodextrin) complexes with p-aminobenzoic acid and o-aminobenzoic acid. Carbohydr. Res. 343, 2504–2508 (2008). doi: 10.1016/j.carres.2008.06.023 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Dipartimento di Scienze e Tecnologie AvanzateUniversità degli Studi del Piemonte Orientale “A. Avogadro”AlessandriaItaly
  2. 2.Consorzio I.N.S.T.M., Piemonte Orientale Research UnitFirenzeItaly
  3. 3.Dipartimento di Chimica Generale e Organica ApplicataUniversità degli Studi di TorinoTorinoItaly
  4. 4.Consorzio I.N.S.T.M., Torino Research UnitFirenzeItaly

Personalised recommendations