The effect of β-cyclodextrin on the solubility and dissolution rate of meloxicam and investigation of the driving force for complexation using molecular modeling

  • Aiman A. Obaidat
  • Rasha A. Khanfar
  • Mohammad N. Khawam
Original Article


The aim of this study was to investigate the effect of β-cyclodextrin (β-CD) on the solubility and dissolution rate of meloxicam. The methods that were employed to prepare meloxicam–β-cyclodextrin complexes were physical mixture, kneaded dispersion, and spray drying. Spray drying method was found to be the best to form a true inclusion complex. Complexes were characterized by thermal analysis, X-ray diffractometry (XRD), and Fourier transform infrared (FT-IR) spectroscopy. The apparent stability constant of the complex, K c, calculated from the slope and intercept of the AL solubility diagram was found to be 429.73, 259.96, 183.31, and 36.50 L mol−1 at pH 2, 3, 6.5, and 10.3, respectively. The dissolution rate of meloxicam from the complexes was higher than from meloxicam alone. Molecular modeling was also used to investigate the interaction between meloxicam and β-CD. The dominant driving force for the complexation was evidently Van der Waals force with very little electrostatic contribution.


Meloxicam β-Cylodextrin Inclusion complex Dissolution X-ray diffraction DSC FT-IR Molecular modeling 


  1. 1.
    Bekers, O., Uijtendaal, E.V., Beijnen, J.H., Bult, A.W., Underberg, J.M.: Cyclodextrins in the pharmaceutical field. Drug Dev. Ind. Pharm. 17, 1503–1549 (1991). doi: 10.3109/03639049109026630 CrossRefGoogle Scholar
  2. 2.
    Loftsson, T., Brewster, M.E.: Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J. Pharm. Sci. 85, 1017–1025 (1996). doi: 10.1021/js950534b CrossRefGoogle Scholar
  3. 3.
    Li, P., Tabibi, S.E., Yalkowsky, S.H.: Combined effect of complexation and pH on solubilization. J. Pharm. Sci. 87, 1535–1537 (1998). doi: 10.1021/js9801889 CrossRefGoogle Scholar
  4. 4.
    Chowdary, K.P.R., Nalluri, B.N.: Nimesulide and β-cyclodextrin inclusion complexes: physicochemical characterization and dissolution rate studies. Drug Dev. Ind. Pharm. 26, 1217–1220 (2000). doi: 10.1081/DDC-100100995 CrossRefGoogle Scholar
  5. 5.
    Obaidat, A.A., Matalqah, S.M., Najib, N.M.: Improvement and characterization of the in-vitro dissolution behavior of sulindac by complexation with β-cyclodextrin. Acta Pharm. 52, 9–18 (2002)Google Scholar
  6. 6.
    Oh, I.J., Song, H.M., Lee, K.C.: Effect of 2-hydroxypropyl-β-cyclodextrin on the stability of prostaglandin E2 in solution. Int. J. Pharm. 106, 135–140 (1994). doi: 10.1016/0378-5173(94)90311-5 CrossRefGoogle Scholar
  7. 7.
    Masson, M., Loftsson, T., Jonsdottir, S., Fridriksdottir, H., Petersen, D.S.: Stabilization of ionic drugs through complexation with non-ionic and ionic cyclodextrins. Int. J. Pharm. 164, 45–55 (1998). doi: 10.1016/S0378-5173(97)00387-6 CrossRefGoogle Scholar
  8. 8.
    Loukas, Y.L., Jayasekera, P., Gregoriadis, G.: Novel liposome-based multicomponent systems for the protection of photolabile agents. Int. J. Pharm. 117, 85–94 (1995). doi: 10.1016/0378-5173(94)00320-5 CrossRefGoogle Scholar
  9. 9.
    Rajewski, R.A., Stella, V.J.: Pharmaceutical applications of cyclodextrins. 2. In vivo drug delivery. J. Pharm. Sci. 85, 1142–1169 (1996). doi: 10.1021/js960075u CrossRefGoogle Scholar
  10. 10.
    Luger, P., Daneck, K., Engel, W., Trummlitz, G., Wagner, K.: Structure and physicochemical properties of meloxicam, a new NSAID. Eur. J. Pharm. Sci. 4, 175–187 (1996). doi: 10.1016/0928-0987(95)00046-1 CrossRefGoogle Scholar
  11. 11.
    Baboota, S., Agarwal, S.P.: Inclusion complexation of meloxicam with β-cyclodextrin. Indian J. Pharm. Sci. 64, 408–411 (2002)Google Scholar
  12. 12.
    Baboota, S., Agarwal, S.P.: Meloxicam complexation with β-cyclodextrin: influence on the anti-inflammatory and ulcerogenic activity. Pharmazie 58, 73–74 (2003)Google Scholar
  13. 13.
    Buchi Naidu, N., Chowadry, K.P.R., Murthy, K.V.R., Satyanarayana, V., Hayman, A.R., Becket, G.: Physicochemical characterization and dissolution properties of meloxicam-cyclodextrin binary systems. J. Pharm. Biomed. Anal. 35, 75–86 (2004). doi: 10.1016/j.jpba.2004.01.003 CrossRefGoogle Scholar
  14. 14.
    Chowdary, K.P.R., Raviprakash, P.: Dissolution kinetics of meloxicam-β-cyclodextrin complex system. Int. J. Chem. Sci. 4, 845–848 (2006)Google Scholar
  15. 15.
    Abdoh, A.A., El-Barghouthi, M.I., Zughul, M.B., Davies, J.E., Badwan, A.A.: Changes in the conformational structure, microscopic and macroscopic pKas of meloxicam on complexation with natural and modified cyclodextrins. Pharmazie 62, 55–59 (2007)Google Scholar
  16. 16.
    Higuchi, T., Connors, K.A.: Phase solubility techniques. In Reilly, C.N. (ed.) Advances in Analytical Chemistry and Instrumentation, vol. 4, pp. 117–212. Interscience, New York (1965)Google Scholar
  17. 17.
    Connors, K.A.: Binding Constants: The Measurement of Molecular Complex Stability, pp. 261–281. Wiley, London (1987)Google Scholar
  18. 18.
    Duchene, D., Vaution, C., Glomot, F.: Cyclodextrins, their value in pharmaceutical technology. Drug Dev. Ind. Pharm. 12, 2193–2215 (1986). doi: 10.3109/03639048609042630 CrossRefGoogle Scholar
  19. 19.
    Brewster, M.E., Loftsson, T.: Cyclodextrins as pharmaceutical solubilizers. Adv. Drug Deliv. Rev. 59, 645–666 (2007). doi: 10.1016/j.addr.2007.05.012 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Aiman A. Obaidat
    • 1
  • Rasha A. Khanfar
    • 1
  • Mohammad N. Khawam
    • 1
  1. 1.Department of Pharmaceutical Technology, Faculty of PharmacyJordan University of Science and TechnologyIrbidJordan

Personalised recommendations