Skip to main content
Log in

Study of the cholesterol extraction capacity of β-cyclodextrin and its derivatives, relationships with their effects on endothelial cell viability and on membrane models

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Endothelial cells (HUVEC) were treated with β-cyclodextrin and hydroxypropylated or methylated derivatives solutions in order to quantify their cholesterol extraction capacity. Non-toxic concentrations of cyclodextrins (CDs) were determined following methyl thiazol tetrazolium (MTT) assays, total protein measurements, morphological observations and trypan blue assays. The residual cholesterol content of cells was measured and the extraction power of CDs compared to results obtained by phase solubility diagrams. Cholesterol was extracted with a dose-response relationship, the lowest residual cholesterol content being obtained with β-CD at 10 mM. Low substituted derivatives (Crysmeb® and hydroxypropyl-β-CD) maintained liposomes integrity (as shown before), were the less cytotoxic and presented the lowest affinity for cholesterol contrary to methylated derivatives with degrees of substitution around 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Medlicott, N.J., Foster, K.A., Audus, K.L., Gupta, S., Stella, V.J.: Comparison of the effects of potential parenteral vehicles for poorly water soluble anticancer drugs (organic cosolvents and cyclodextrin solutions) on cultured endothelial cells (HUV-EC). J. Pharm. Sci. 87, 1138–1143 (1998). doi:10.1021/js9704442

    Article  CAS  Google Scholar 

  2. Mosher, G., Thompson, D.O.: Safety of cyclodextrins. In: Swarbrick, J., Boylan, J. C. E. (eds.) Encyclopedia of Pharmaceutical Technology, vol. 19, pp. 72–81. Marcel Dekker, New York (2000)

  3. Zepik, H.H., Walde, P., Kostoryz, E.L., Code, J., Yourtee, D.M.: Lipid vesicles as membrane models for toxicological assessment of xenobiotics. Crit. Rev. Toxicol. 38, 1–11 (2008). doi:10.1080/10408440701524519

    Article  CAS  Google Scholar 

  4. Piel, G., Piette, M., Barillaro, V., Castagne, D., Evrard, B., Delattre, L.: Study of the relationship between lipid binding properties of cyclodextrins and their effect on the integrity of liposomes. Int. J. Pharm. 338, 35–42 (2007). doi:10.1016/j.ijpharm.2007.01.015

    Article  CAS  Google Scholar 

  5. Piel, G., Piette, M., Barillaro, V., Castagne, D., Evrard, B., Delattre, L.: Betamethasone-in-cyclodextrin-in-liposome: the effect of cyclodextrins on encapsulation efficiency and release kinetics. Int. J. Pharm. 312, 75–82 (2006). doi:10.1016/j.ijpharm.2005.12.044

    Article  CAS  Google Scholar 

  6. Piel, G., Piette, M., Barillaro, V., Castagne, D., Evrard, B., Delattre, L.: Study of the interaction between cyclodextrins and liposome membranes: effect on the permeability of liposomes. J. Incl. Phenom. Macrocycl. Chem. 57, 309–311 (2007). doi:10.1007/s10847-006-9178-y

    Article  CAS  Google Scholar 

  7. Hatzi, P., Mourtas, S., Klepetsanis, P.G., Antimisiaris, S.G.: Integrity of liposomes in presence of cyclodextrins: effect of liposome type and lipid composition. Int. J. Pharm. 333, 167–176 (2007). doi:10.1016/j.ijpharm.2006.09.059

    Article  CAS  Google Scholar 

  8. Danthi, P., Chow, M.: Cholesterol removal by methyl-β-cyclodextrin inhibits poliovirus entry. J. Virol. 78, 33–41 (2004). doi:10.1128/JVI.78.1.33-41.2004

    Article  CAS  Google Scholar 

  9. Barnes, K., Ingram, J.C., Bennett, M.D., Stewart, G.W., Baldwin, S.A.: Methyl-β-cyclodextrin stimulates glucose uptake in Clone 9 cells: a possible role for lipid rafts. Biochem. J. 378, 343–351 (2004). doi:10.1042/BJ20031186

    Article  CAS  Google Scholar 

  10. Leroy-Lechat, F., Wouessidjewe, D., Andreux, J.-P., Puisieux, F., Duchêne, D.: Evaluation of the cytotoxicity of cyclodextrins and hydroxypropylated derivatives. Int. J. Pharm. 101, 97–103 (1994). doi:10.1016/0378-5173(94)90080-9

    Article  CAS  Google Scholar 

  11. Garbacki, N., Kinet, M., Nusgens, B., Desmecht, D., Damas, J.: Proanthocyanidins, from Ribes nigrum leaves, reduce endothelial adhesion molecules ICAM-1 and VCAM-1. J. Inflamm. (2005). doi:10.1186/1476-9255-2-9

  12. Castagne, D., Belhadj Salem, L., Delattre, L., Nusgens, B., Piel, G.: Effect of cyclodextrins on the viability of endothelial cells. J. Incl. Phenom. Macrocycl. Chem. 57, 105–107 (2007). doi:10.1007/s10847-006-9211-1

    Article  CAS  Google Scholar 

  13. Christian, A.E., Haynes, M.P., Phillips, M.C., Rothblat, G.H.: Use of cyclodextrins for manipulating cellular cholesterol content. J. Lipid Res. 38, 2264–2272 (1997)

    CAS  Google Scholar 

  14. Ilangumaran, S., Hoessli, D.C.: Effects of cholesterol depletion by cyclodextrin on the sphingolipid microdomains of the plasma membrane. Biochem. J. 335, 433–440 (1998)

    CAS  Google Scholar 

  15. Kilsdonk, E.P., Yancey, P.G., Stoudt, G.W., Bangerter, F.W., Johnson, W.J., Phillips, M.C., Rothblat, G.H.: Cellular cholesterol efflux mediated by cyclodextrins. J. Biol. Chem. 270, 17250–17256 (1995). doi:10.1074/jbc.270.29.17250

    Article  CAS  Google Scholar 

  16. Yancey, P.G., Rodrigueza, W.V., Kilsdonk, E.P., Stoudt, G.W., Johnson, W.J., Phillips, M.C., Rothblat, G.H.: Cellular cholesterol efflux mediated by cyclodextrins. Demonstration of kinetic pools and mechanism of efflux. J. Biol. Chem. 271, 16026–16034 (1996). doi:10.1074/jbc.271.27.16026

    Article  CAS  Google Scholar 

  17. Balut, C., Steels, P., Radu, M., Ameloot, M., Van Driessche, W., Jans, D.: Membrane cholesterol extraction decreases Na+ transport in A6 renal epithelia. Am. J. Physiol. Cell Physiol. 290, C87–C94 (2006). doi:10.1152/ajpcell.00184.2005

    Article  CAS  Google Scholar 

  18. Jans, R., Atanasova, G., Jadot, M., Poumay, Y.: Cholesterol depletion upregulates involucrin expression in epidermal keratinocytes through activation of p38. J. Invest. Dermatol. 123, 564–573 (2004). doi:10.1111/j.0022-202X.2004.23221.x

    Article  CAS  Google Scholar 

  19. Beseničar, M.P., Bavdek, A., Kladnik, A., Macek, P., Anderluh, G.: Kinetics of cholesterol extraction from lipid membranes by methyl-β-cyclodextrin—a surface plasmon resonance approach. Biochim. Biophys. Acta Biomembr. 1778, 175–184 (2008). doi:10.1016/j.bbamem.2007.09.022

    Article  Google Scholar 

  20. Grenha, A., Grainger, C.I., Dailey, L.A., Seijo, B., Martin, G.P., Remunan-Lopez, C., Forbes, B.: Chitosan nanoparticles are compatible with respiratory epithelial cells in vitro. Eur. J. Pharm. Sci. 31, 73–84 (2007). doi:10.1016/j.ejps.2007.02.008

    Article  CAS  Google Scholar 

  21. Patel, J., Belhadj Salem, L., Martin, G.P., Delattre, L., Evrard, B., Forbes, B., Bosquillon, C.: Use of the MTT assay to evaluate the biocompatibility of β-cyclodextrin derivatives with respiratory epithelial cells. J. Pharm. Pharmacol. 58(Suppl 1), A64 (2006)

    Google Scholar 

  22. Petkovic, M., Vocks, A., Muller, M., Schiller, J., Arnhold, J.: Comparison of different procedures for the lipid extraction from HL-60 cells: a MALDI-TOF mass spectrometric study. Z. Naturforsch. [C] 60, 143–151 (2005)

    CAS  Google Scholar 

  23. Folch, J., Lees, M., Sloane Stanley, G.H.: A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226, 497–509 (1957)

    CAS  Google Scholar 

  24. Fillet, M., Van Heugen, J.C., Servais, A.C., De Graeve, J., Crommen, J.: Separation, identification and quantitation of ceramides in human cancer cells by liquid chromatography-electrospray ionization tandem mass spectrometry. J. Chromatogr. A 949, 225–233 (2002). doi:10.1016/S0021-9673(01)01422-4

    Article  CAS  Google Scholar 

  25. Queiroz, K., Assis, C., Medeiros, V., Rocha, H., Aoyama, H., Ferreira, C., Leite, E.: Cytotoxicity effect of algal polysaccharides on HL60 cells. Biochemistry, Moscow 71, 1312–1315 (2006)

    Article  CAS  Google Scholar 

  26. Wiegand, C., Hipler, U.-C.: Methods for the measurement of cell and tissue compatibility including tissue regeneration processes. GMS Krankenhaushyg. Interdiszip. 3, Doc12 (2008)

  27. Pitha, J., Irie, T., Sklar, P.B., Nye, J.S.: Drug solubilizers to aid pharmacologists: amorphous cyclodextrin derivatives. Life Sci. 43, 493–502 (1988). doi:10.1016/0024-3205(88)90150-6

    Article  CAS  Google Scholar 

  28. Kiss, T., Fenyvesi, F., Pasztor, N., Feher, P., Varadi, J., Kocsan, R., Szente, L., Fenyvesi, E., Szabo, G., Vecsernyes, M., Bacskay, I.: Cytotoxicity of different types of methylated beta-cyclodextrins and ionic derivatives. Pharmazie 62, 557–558 (2007)

    CAS  Google Scholar 

  29. Saarinen-Savolainen, P., Jarvinen, T., Araki-Sasaki, K., Watanabe, H., Urtti, A.: Evaluation of cytotoxicity of various ophthalmic drugs, eye drop excipients and cyclodextrins in an immortalized human corneal epithelial cell line. Pharm. Res. 15, 1275–1280 (1998). doi:10.1023/A:1011956327987

    Article  CAS  Google Scholar 

  30. Matilainen, L., Toropainen, T., Vihola, H., Hirvonen, J., Jarvinen, T., Jarho, P., Jarvinen, K.: In vitro toxicity and permeation of cyclodextrins in Calu-3 cells. J. Control. Release 126, 10–16 (2008)

    CAS  Google Scholar 

  31. Yanagisawa, M., Nakamura, K., Taga, T.: Roles of lipid rafts in integrin-dependent adhesion and gp130 signalling pathway in mouse embryonic neural precursor cells. Genes Cells 9, 801–809 (2004). doi:10.1111/j.1365-2443.2004.00764.x

    Article  CAS  Google Scholar 

  32. McDonald, J.F., Zheleznyak, A., Frazier, W.A.: Cholesterol-independent interactions with CD47 enhance αvβ3 avidity. J. Biol. Chem 279, 17301–17311 (2004). doi:10.1074/jbc.M312782200

    Article  CAS  Google Scholar 

  33. Gaus, K., Le Lay, S., Balasubramanian, N., Schwartz, M.A.: Integrin-mediated adhesion regulates membrane order. J. Cell Biol. 174, 725–734 (2006). doi:10.1083/jcb.200603034

    Article  CAS  Google Scholar 

  34. Visconti, P.E., Galantino-Homer, H., Ning, X.P., Moore, G.D., Valenzuela, J.P., Jorgez, C.J., Alvarez, J.G., Kopf, G.S.: Cholesterol efflux-mediated signal transduction in mammalian sperm. β-Cyclodextrins initiate transmembrane signaling leading to an increase in protein tyrosine phosphorylation and capacitation. J. Biol. Chem. 274, 3235–3242 (1999). doi:10.1074/jbc.274.5.3235

    Article  CAS  Google Scholar 

  35. Nishijo, J., Moriyama, S., Shiota, S.: Interactions of cholesterol with cyclodextrins in aqueous solution. Chem. Pharm. Bull. (Tokyo) 51, 1253–1257 (2003). doi:10.1248/cpb.51.1253

    Article  CAS  Google Scholar 

  36. Nishijo, J., Moriyama, S., Shiota, S., Kamigauchi, M., Sugiura, M.: Interaction of heptakis (2, 3, 6-tri-O-methyl)-β-cyclodextrin with cholesterol in aqueous solution. Chem. Pharm. Bull. (Tokyo) 52, 1405–1410 (2004). doi:10.1248/cpb.52.1405

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work has been supported financially by the Fonds Spéciaux pour la recherche from the University of Liège.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Delphine Castagne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castagne, D., Fillet, M., Delattre, L. et al. Study of the cholesterol extraction capacity of β-cyclodextrin and its derivatives, relationships with their effects on endothelial cell viability and on membrane models. J Incl Phenom Macrocycl Chem 63, 225–231 (2009). https://doi.org/10.1007/s10847-008-9510-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-008-9510-9

Keywords

Navigation