Skip to main content
Log in

Abstract

The present short paper shows the progress of the calixcrowns chemistry. Calixcrowns which were first investigated for their metal complexation properties are now reaching new fields of research wider than supramolecular chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8

Similar content being viewed by others

References

  1. Salorinne, K., Nissinen, M.: Calixcrowns: synthesis and properties. J. Incl. Phenom. Macrocycl. Chem 61, 11 (2008). doi:10.1007/s10847-008-9411-y

    Article  CAS  Google Scholar 

  2. Pulpoka, B., Vicens, J.: 1,3-Alternate calix[4]arene: the sophisticated conformer of calix[4]arene. Collect. Czech. Chem. Commun 69, 1251 (2004). doi:10.1135/cccc20041251

    Article  CAS  Google Scholar 

  3. Koh, K.N., Araki, K., Shinkai, S., Asfari, Z., Vicens, J.: Cation binding properties of a novel 1,3-alternate calix[4]biscrown. Formation of 1:1 and 1:2 complexes and unique cation tunneling across a calix[4]arene cavity. Tetrahedron Lett 36, 6095 (1995). doi:10.1016/0040-4039(95)01212-Z

    Article  CAS  Google Scholar 

  4. de Mendoza, J., Cuevas, F., Prados, P., Meadows, E.S., Gokel, G.W.: A synthetic cation-transporting calix[4]arene derivative active in phospholipid bilayers. Angew. Chem. Int. Ed 37, 1534 (1998). doi :10.1002/(SICI)1521-3773(19980619)37:11<1534::AID-ANIE1534>3.0.CO;2-B

    Article  Google Scholar 

  5. Maulucci, N., De Riccardis, F., Botta, C·B., Casapullo, A., Cressina, E., Fregonese, M., et al.: Calix[4]arene-cholic acid conjugates: a new class of efficient synthetic ionophores. Chem. Commun. (Camb.) 1354 (2005) doi :10.1039/b415908j

  6. Sidorov, V., Kotch, F.W., Abdrakhmanova, G., Mizani, R., Fettinger, J.C., Davis, J.T.: Ion channel formation from a calix[4]arene amide that binds HCl. J. Am. Chem. Soc 124, 2267 (2002). doi:10.1021/ja012338e

    Article  CAS  Google Scholar 

  7. Sidorov, V., Kotch, F.W., Kuebler, J.L., Lam, Y.-F., Davis, J.T.: Chloride transport across lipid bilayers and transmembrane potential induction by an oligophenoxyacetamide. J. Am. Chem. Soc 125, 2840 (2003). doi:10.1021/ja029372t

    Article  CAS  Google Scholar 

  8. Kim, S.K., Lee, J.K., Lee, S.H., Lim, M.S., Lee, S.W., Sim, W., et al.: Silver ion shuttling in the Trimer-Mimic thiacalix[4]crown tube. J. Org. Chem 69, 2877 (2004). doi:10.1021/jo035567n

    Article  CAS  Google Scholar 

  9. Britz, D.A., Kholbystov, A.N., Porfyrakis, K., Arvadan, A., Briggs, G.A.D.: Chemical reactions inside single-walled carbon nano test-tubes. Chem. Commun. (Camb.) 37 (2005) doi:10.1039/b414247k

  10. Wanigasekara, E., Leontiev, A.V., Organo, V.G., Rudkevich, D.M.: Supramolecular, calixarene-based complexes that release no gas. Eur. J. Org. Chem. 2254 (2007) doi:10.1002/ejoc.200700173

  11. Rudkevich, D.M.: Sensing and fixation of gases. Calixarenes in the nanoworld, Vicens J., Harrowfield J. (eds.) Springer, Dordrecht, The Netherlands (2007)

  12. Easton, C.J., Lincoln, S.F., Barr, L., Onagi, H.: Molecular reactors and machines: applications, potential, and limitations. Chem. Eur. J 10, 3120 (2004). doi:10.1002/chem.200305768

    Article  CAS  Google Scholar 

  13. Balzani, V., Credi, A., Venturi, M.: The bottom-up approach to molecular-level devices and machines. Chem. Eur. J 8, 5524 (2002). doi :10.1002/1521-3765(20021216)8:24<5524::AID-CHEM5524>3.0.CO;2-J

    Article  CAS  Google Scholar 

  14. Asfari, Z., Vicens, J.: Molecular machines. J. Incl. Phenom 36, 103 (2000)

    CAS  Google Scholar 

  15. Asfari, Z., Naumann, C., Kaufmann, G., Vicens, J.: Molecular modelling and chemical synthesis of molecular “Mappemondes” designed from a calix[4]biscrown. Tetrahedron Lett 37, 3325 (1996). (Highlighted by Holmes A. B., Richard G.: Molecular machines. Chem. Ind. 468)

    Article  CAS  Google Scholar 

  16. Asfari, Z., Naumann, C., Kaufmann, G., Vicens, J.: Synthesis of a molecular mill designed from a calix[4]-bis-crown. Tetrahedron Lett 39, 9007 (1998). doi:10.1016/S0040-4039(98)02066-8

    Article  CAS  Google Scholar 

  17. Newkome, G.R., Moorefield, C.N., Vögtle, F.: Dentritic molecules. VCH, Weinheim, Germany (1996)

    Google Scholar 

  18. Cheriaa, N., Mahouachi, M., Ben Othman, A., Baklouti, L., Kim, J.S., Kim, Y., et al.: Calixdendrimers. In: Vicens, J., Harrowfield, J. (eds.) Calixarenes in the nanoworld. Springer, Dordrecht, the Netherlands (2007)

    Google Scholar 

  19. Bu, J.-H., Zheng, Q.-Y., Chen, C.-F., Huang, Z.-T.: The synthesis of calix[4]crown based dendrimer. Tetrahedron 61, 897 (2005). doi:10.1016/j.tet.2004.11.043

    Article  CAS  Google Scholar 

  20. Zhu, H., Snyder, M.: Protein chip technology. Curr. Opin. Chem. Biol 7, 55 (2003). doi:10.1016/S1367-5931(02)00005-4

    Article  CAS  Google Scholar 

  21. Cahill, D.J.: Protein and antibody arrays and their medicinal applications. J. Immunol. Methods 250, 81 (2001). doi:10.1016/S0022-1759(01)00325-8

    Article  CAS  Google Scholar 

  22. Lee, Y., Lee, E.K., Cho, Y.W., Matsui, T., Kang, I.-C., Kim, T.-S., et al.: ProteoChip: a highly sensitive protein microarray prepared by a novel method of protein immobilization for application of protein-protein interaction studies. Proteonomics 3, 2289 (2003). doi:10.1002/pmic.200300541

    Article  CAS  Google Scholar 

  23. Oh, S.W., Moon, J.D., Lim, H.J., Park, S.Y., Kim, T., Park, J.B., et al.: Calixarene derivative as a tool for highly sensitive detection and oriented immobilization of proteins in a microarray format through noncovalent molecular interaction. FASEB J 19, 1335 (2005)

    CAS  Google Scholar 

  24. Garcia-Garabay, M.A.: Engineering carbene rearrangement in crystals: from molecular information to solid-state reactivity. Acc. Chem. Res 36, 491 (2003). doi:10.1021/ar970309w

    Article  Google Scholar 

  25. Olejnik, Z., Lis, T., Vogt, A., Wolowiec, S., Skarzewski, J.: Single-crystal-to-single-crystal transformation of the dichloromethane solvate of the Schiff base Manganese (III) complex to a solvent free material. J. Incl. Phenom. Macrocycl. Chem 38, 221 (2000). doi:10.1023/A:1008185227837

    Article  CAS  Google Scholar 

  26. Chu, Q., Swenson, D.C., Mac Gillivray, L.R.: Single-crystal-to-single-crystal transformation mediated by argentophilic forces converts a finite metal complex into an infinite coordination network. Angew. Chem. Int. Ed 44, 3569 (2005). doi:10.1002/anie.200500400

    Article  CAS  Google Scholar 

  27. Lee, J.Y., Lee, S.Y., Sim, W., Park, K.-M., Kim, J., Lee, S.S.: Temperature-dependent 3-d cui coordination polymers of calix[4]-bis-dithiacrown: crystal-to-crystal transformation and photoluminescence change on coordinated solvent removal. J. Am. Chem. Soc 130, 6902 (2008). doi:10.1021/ja8008693

    Article  CAS  Google Scholar 

  28. Lehn, J.-M.: Toward self-organisation and complex matter. Science 295, 2400 (2002). doi:10.1126/science.1071063

    Article  CAS  Google Scholar 

  29. Reinhoudt, D.N., Crego-Calama, M.: Synthesis beyond the molecule. Science 295, 2403 (2002). doi:10.1126/science.1069197

    Article  CAS  Google Scholar 

  30. Stein, R.L.: Towards a process philosophy of chemistry. HYLE 10, 5 (2004)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques Vicens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J.S., Vicens, J. Progress of calixcrowns chemistry. J Incl Phenom Macrocycl Chem 63, 189–193 (2009). https://doi.org/10.1007/s10847-008-9503-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-008-9503-8

Keywords

Navigation