Progress of calixcrowns chemistry

  • Jong Seung Kim
  • Jacques Vicens


The present short paper shows the progress of the calixcrowns chemistry. Calixcrowns which were first investigated for their metal complexation properties are now reaching new fields of research wider than supramolecular chemistry.


Calixcrowns Nanochemistry Immobilization of proteins Single-crystal–single-crystal transformation 


  1. 1.
    Salorinne, K., Nissinen, M.: Calixcrowns: synthesis and properties. J. Incl. Phenom. Macrocycl. Chem 61, 11 (2008). doi: 10.1007/s10847-008-9411-y CrossRefGoogle Scholar
  2. 2.
    Pulpoka, B., Vicens, J.: 1,3-Alternate calix[4]arene: the sophisticated conformer of calix[4]arene. Collect. Czech. Chem. Commun 69, 1251 (2004). doi: 10.1135/cccc20041251 CrossRefGoogle Scholar
  3. 3.
    Koh, K.N., Araki, K., Shinkai, S., Asfari, Z., Vicens, J.: Cation binding properties of a novel 1,3-alternate calix[4]biscrown. Formation of 1:1 and 1:2 complexes and unique cation tunneling across a calix[4]arene cavity. Tetrahedron Lett 36, 6095 (1995). doi: 10.1016/0040-4039(95)01212-Z CrossRefGoogle Scholar
  4. 4.
    de Mendoza, J., Cuevas, F., Prados, P., Meadows, E.S., Gokel, G.W.: A synthetic cation-transporting calix[4]arene derivative active in phospholipid bilayers. Angew. Chem. Int. Ed 37, 1534 (1998). doi :10.1002/(SICI)1521-3773(19980619)37:11<1534::AID-ANIE1534>3.0.CO;2-BCrossRefGoogle Scholar
  5. 5.
    Maulucci, N., De Riccardis, F., Botta, C·B., Casapullo, A., Cressina, E., Fregonese, M., et al.: Calix[4]arene-cholic acid conjugates: a new class of efficient synthetic ionophores. Chem. Commun. (Camb.) 1354 (2005) doi :10.1039/b415908jGoogle Scholar
  6. 6.
    Sidorov, V., Kotch, F.W., Abdrakhmanova, G., Mizani, R., Fettinger, J.C., Davis, J.T.: Ion channel formation from a calix[4]arene amide that binds HCl. J. Am. Chem. Soc 124, 2267 (2002). doi: 10.1021/ja012338e CrossRefGoogle Scholar
  7. 7.
    Sidorov, V., Kotch, F.W., Kuebler, J.L., Lam, Y.-F., Davis, J.T.: Chloride transport across lipid bilayers and transmembrane potential induction by an oligophenoxyacetamide. J. Am. Chem. Soc 125, 2840 (2003). doi: 10.1021/ja029372t CrossRefGoogle Scholar
  8. 8.
    Kim, S.K., Lee, J.K., Lee, S.H., Lim, M.S., Lee, S.W., Sim, W., et al.: Silver ion shuttling in the Trimer-Mimic thiacalix[4]crown tube. J. Org. Chem 69, 2877 (2004). doi: 10.1021/jo035567n CrossRefGoogle Scholar
  9. 9.
    Britz, D.A., Kholbystov, A.N., Porfyrakis, K., Arvadan, A., Briggs, G.A.D.: Chemical reactions inside single-walled carbon nano test-tubes. Chem. Commun. (Camb.) 37 (2005) doi: 10.1039/b414247k
  10. 10.
    Wanigasekara, E., Leontiev, A.V., Organo, V.G., Rudkevich, D.M.: Supramolecular, calixarene-based complexes that release no gas. Eur. J. Org. Chem. 2254 (2007) doi: 10.1002/ejoc.200700173
  11. 11.
    Rudkevich, D.M.: Sensing and fixation of gases. Calixarenes in the nanoworld, Vicens J., Harrowfield J. (eds.) Springer, Dordrecht, The Netherlands (2007)Google Scholar
  12. 12.
    Easton, C.J., Lincoln, S.F., Barr, L., Onagi, H.: Molecular reactors and machines: applications, potential, and limitations. Chem. Eur. J 10, 3120 (2004). doi: 10.1002/chem.200305768 CrossRefGoogle Scholar
  13. 13.
    Balzani, V., Credi, A., Venturi, M.: The bottom-up approach to molecular-level devices and machines. Chem. Eur. J 8, 5524 (2002). doi :10.1002/1521-3765(20021216)8:24<5524::AID-CHEM5524>3.0.CO;2-JCrossRefGoogle Scholar
  14. 14.
    Asfari, Z., Vicens, J.: Molecular machines. J. Incl. Phenom 36, 103 (2000)Google Scholar
  15. 15.
    Asfari, Z., Naumann, C., Kaufmann, G., Vicens, J.: Molecular modelling and chemical synthesis of molecular “Mappemondes” designed from a calix[4]biscrown. Tetrahedron Lett 37, 3325 (1996). (Highlighted by Holmes A. B., Richard G.: Molecular machines. Chem. Ind. 468)CrossRefGoogle Scholar
  16. 16.
    Asfari, Z., Naumann, C., Kaufmann, G., Vicens, J.: Synthesis of a molecular mill designed from a calix[4]-bis-crown. Tetrahedron Lett 39, 9007 (1998). doi: 10.1016/S0040-4039(98)02066-8 CrossRefGoogle Scholar
  17. 17.
    Newkome, G.R., Moorefield, C.N., Vögtle, F.: Dentritic molecules. VCH, Weinheim, Germany (1996)Google Scholar
  18. 18.
    Cheriaa, N., Mahouachi, M., Ben Othman, A., Baklouti, L., Kim, J.S., Kim, Y., et al.: Calixdendrimers. In: Vicens, J., Harrowfield, J. (eds.) Calixarenes in the nanoworld. Springer, Dordrecht, the Netherlands (2007)Google Scholar
  19. 19.
    Bu, J.-H., Zheng, Q.-Y., Chen, C.-F., Huang, Z.-T.: The synthesis of calix[4]crown based dendrimer. Tetrahedron 61, 897 (2005). doi: 10.1016/j.tet.2004.11.043 CrossRefGoogle Scholar
  20. 20.
    Zhu, H., Snyder, M.: Protein chip technology. Curr. Opin. Chem. Biol 7, 55 (2003). doi: 10.1016/S1367-5931(02)00005-4 CrossRefGoogle Scholar
  21. 21.
    Cahill, D.J.: Protein and antibody arrays and their medicinal applications. J. Immunol. Methods 250, 81 (2001). doi: 10.1016/S0022-1759(01)00325-8 CrossRefGoogle Scholar
  22. 22.
    Lee, Y., Lee, E.K., Cho, Y.W., Matsui, T., Kang, I.-C., Kim, T.-S., et al.: ProteoChip: a highly sensitive protein microarray prepared by a novel method of protein immobilization for application of protein-protein interaction studies. Proteonomics 3, 2289 (2003). doi: 10.1002/pmic.200300541 CrossRefGoogle Scholar
  23. 23.
    Oh, S.W., Moon, J.D., Lim, H.J., Park, S.Y., Kim, T., Park, J.B., et al.: Calixarene derivative as a tool for highly sensitive detection and oriented immobilization of proteins in a microarray format through noncovalent molecular interaction. FASEB J 19, 1335 (2005)Google Scholar
  24. 24.
    Garcia-Garabay, M.A.: Engineering carbene rearrangement in crystals: from molecular information to solid-state reactivity. Acc. Chem. Res 36, 491 (2003). doi: 10.1021/ar970309w CrossRefGoogle Scholar
  25. 25.
    Olejnik, Z., Lis, T., Vogt, A., Wolowiec, S., Skarzewski, J.: Single-crystal-to-single-crystal transformation of the dichloromethane solvate of the Schiff base Manganese (III) complex to a solvent free material. J. Incl. Phenom. Macrocycl. Chem 38, 221 (2000). doi: 10.1023/A:1008185227837 CrossRefGoogle Scholar
  26. 26.
    Chu, Q., Swenson, D.C., Mac Gillivray, L.R.: Single-crystal-to-single-crystal transformation mediated by argentophilic forces converts a finite metal complex into an infinite coordination network. Angew. Chem. Int. Ed 44, 3569 (2005). doi: 10.1002/anie.200500400 CrossRefGoogle Scholar
  27. 27.
    Lee, J.Y., Lee, S.Y., Sim, W., Park, K.-M., Kim, J., Lee, S.S.: Temperature-dependent 3-d cui coordination polymers of calix[4]-bis-dithiacrown: crystal-to-crystal transformation and photoluminescence change on coordinated solvent removal. J. Am. Chem. Soc 130, 6902 (2008). doi: 10.1021/ja8008693 CrossRefGoogle Scholar
  28. 28.
    Lehn, J.-M.: Toward self-organisation and complex matter. Science 295, 2400 (2002). doi: 10.1126/science.1071063 CrossRefGoogle Scholar
  29. 29.
    Reinhoudt, D.N., Crego-Calama, M.: Synthesis beyond the molecule. Science 295, 2403 (2002). doi: 10.1126/science.1069197 CrossRefGoogle Scholar
  30. 30.
    Stein, R.L.: Towards a process philosophy of chemistry. HYLE 10, 5 (2004)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of ChemistryKorea UniversitySeoulKorea
  2. 2.Institut Pluridisciplinaire Hubert Curien, CNRS, ECPM-ULPStrasbourgFrance

Personalised recommendations