Polymeric membrane and coated graphite electrode based on newly synthesized tetraazamacrocyclic ligand for trace level determination of nickel ion in fruit juices and wine samples

  • Ashok Kumar Singh
  • Prerna Singh
  • Sameena Mehtab
Original Article


Novel polymeric membrane electrode (PME) and coated graphite electrode (CGE) for nickel ion were prepared based on 2,9-(2-methoxyaniline)2-4,11-Me2-[14]-1,4,8,11-tetraene-1,5,8,12-N4 as a suitable neutral ionophore. The addition of lipophilic anion excluder (NaTPB) and various plasticizers viz o-nitrophenyloctylether (o-NPOE), dioctylphthalate (DOP), dibutylphthalate (DBP), 1-chloronaphthalene (CN) and tri-n-butylphosphate (TBP) have found to improve the performance of the sensors. The best performance was obtained for the membrane sensor having a composition of I:NaTPB:TBP:PVC in the ratio 6:4:100:90 (w/w; mg). The electrodes exhibit Nernstian slopes for Ni2+ ions over wide concentration ranges of 4.6 × 10−7–1.0 × 10−1 M for PME and 7.7 × 10−8–1.0 × 10−1 M for CGE with limits of detection of 2.7 × 10−7 M for PME and 3.7 × 10−8 M for CGE. The response time for PME and CGE was found to be 10 and 8 s respectively. The potentiometric responses are independent of the pH of the test solution in the pH range 3.0–8.0. The proposed electrodes revealed good selectivities over a wide variety of other cations including alkali, alkaline earth, transition and heavy metal ions. The coated graphite electrode was used as an indicator electrode in the potentiometric titration of nickel ion with EDTA and in direct determination in different fruit juices and wine samples.


Tetraazamacrocycle Nickel selective sensor Coated graphite electrode Ion selective electrodes Chemical sensors 



Ms. Prerna Singh is highly thankful to Defence Research and Development Organisation (DRDO), New Delhi for providing financial assistance to undertake this work.


  1. 1.
    Kimura, K., Shono, T.: Complexation of cationic species by crown ethers. In: Inoue, Y., Gokel, G.W. (eds.) Cation Binding by Macrocycle. Marcel-Dekker, New York (1990)Google Scholar
  2. 2.
    Zolotov, Y.A. (ed.): Macrocyclic Compound in Analytical Chemistry. Wiley, New York (1997)Google Scholar
  3. 3.
    Buhlmann, P., Pretsch, E., Bakker, E.: Carrier based ion-selective electrode and bulk optodes. 2. Ionophores for potentiometric and optical sensors. Chem. Rev. 98, 1593–1687 (1998). doi: 10.1021/cr970113+ CrossRefGoogle Scholar
  4. 4.
    Tsukube, H.: Double armed crown ethers and armed macrocycle as a new series of metal selective reagents; a review. Talanta 40, 1313–1324 (1993). doi: 10.1016/0039-9140(93)80204-5 CrossRefGoogle Scholar
  5. 5.
    Choi, K.Y., Lee, H.Y., Park, B., Kim, J.H., Kim, J., Kim, M.W., et al.: Synthesis and properties of nickel(II) and copper(II) complexes of a di-N-acetamidetetraaza macrocycle. Polyhedron 20, 2003–2009 (2001). doi: 10.1016/S0277-5387(01)00801-4 CrossRefGoogle Scholar
  6. 6.
    Hambley, T.W., Lindoy, L.F., Reimers, J.R., Turner, P., Wei, W., Cooper, A.N.W.: Macrocyclic ligand design, X-Ray, DFT and solution studies of the effect of N-methylation and N-benzylation of 1,4,10,13-tetraoxa-7,16-diazacyclooctadecane on its affinity for selected transition and post-transition metal ions. J. Chem. Soc., Dalton Trans. 614–620 (2001). doi: 10.1039/b008789k
  7. 7.
    Gao, E.Q., Sun, H.Y., Liao, H.Y.D.Z., Jiang, Z.H., Yan, S.P.: Synthesis of and magnetic interaction in binuclear copper(II)-M(II) (M = Cu, Ni, Mn) complexes of macrocyclic oxaamido ligands. Polyhedron 21, 359–364 (2002). doi: 10.1016/S0277-5387(01)01002-6 CrossRefGoogle Scholar
  8. 8.
    Fenton, R.R., Gauci, R., Junk, P.C., Lindoy, L.F., Luckay, R.C., Meehan, G.V., et al.: Macrocyclic ligand design. Structure-function relationship involving the interaction of pyridyl-containing, mixed oxygen-nitrogen donor macrocycles with cobalt(II), nickel(II), copper(II), zinc(II), cadmium (II), silver(I) and lead(II). J. Chem. Soc., Dalton Trans. 2185–2193 (2002). doi: 10.1039/b201195f
  9. 9.
    Chandra, S., Gupta, K.: Twelve-, fourteen- and sixteen membered macrocyclic ligands and a study of the effect of ring size on ligand field strength. Transit. Metal Chem. 27, 196–199 (2002). doi: 10.1023/A:1013935602736 CrossRefGoogle Scholar
  10. 10.
    Merian, E. (ed.): Metals and their compounds in the environment, part II, vol. 22, pp. 1101–1102. VCH, New York (1991)Google Scholar
  11. 11.
    Bohn, H.L., McNeal, B.L., O’Connor, G.A.: Soil Chemistry, 2nd edn, pp. 30–32. Wiley Interscience, Chichester (1985)Google Scholar
  12. 12.
    Gupta, V.K., Jain, A.K., Singh, L.P., Khurana, U.: Porphyrins as carrier in PVC based membrane potentiometric sensors for nickel(II). Anal. Chim. Acta 335, 33–41 (1997). doi: 10.1016/S0003-2670(97)81609-1 CrossRefGoogle Scholar
  13. 13.
    Pungor, E., Toth, K., Havas, J.: Nickel selective electrode based on nickel-dimethylglyoxime complex in silicone rubber. Acta Chir. Acad. Sci. Hung 48, 17–23 (1996)Google Scholar
  14. 14.
    Lal, U.S., Chattopadhayaya, M.C., Dey, A.K.: Heterogeneous ion-selective electrodes based on electroneutral ion carriers: barium(II) and nickel(II) electrodes. J. Ind. Chem. Soc. 59, 493–496 (1982)Google Scholar
  15. 15.
    Awasthi, S.P., Kulkarni, V.T., Sundersane, M.: Nickel(II)-bis-2-ethylhexylphosphate as a sensor for nickel electrode. J. Electrochem. Soc. India 37, 309–311 (1988)Google Scholar
  16. 16.
    Buchanan, E.B., Saego, J.L.: Study of impregnated silicone rubber membranes for potential indicating electrodes. Anal. Chem. 40, 517–521 (1968). doi: 10.1021/ac60259a027 CrossRefGoogle Scholar
  17. 17.
    Jain, A.K., Gupta, V.K., Singh, R.D., Khurana, U., Singh, L.P.: Nickel(II) selective sensors based on heterogeneous membrane of macrocyclic compounds. Sens. Actuators B Chem. 40, 15–20 (1997). doi: 10.1016/S0925-4005(97)80193-1 CrossRefGoogle Scholar
  18. 18.
    Singh, A.K., Sharma, C.L., Baniwal, S., Panwar, A.: Nickel(II) selective membrane electrode based on macrocyclic ligand. Electroanalysis 13, 1209–1214 (2001). doi :10.1002/1521-4109(200110)13:14<1209::AID-ELAN1209>3.0.CO;2-NGoogle Scholar
  19. 19.
    Singh, A.K., Saxena, P.: A PVC based membrane electrode for nickel(II) ions incorporating a tetraazamacrocycle as an ionophore. Sens. Actuators B Chem. 121, 349–355 (2007). doi: 10.1016/j.snb.2006.03.043 CrossRefGoogle Scholar
  20. 20.
    Gupta, V.K., Prasad, R., Kumar, P., Mangla, R.: New nickel(II) selective potentiometric sensor based on 5,7,12,14-tetramethyl-dibenzotetraazaannulene in a poly(vinyl chloride) matrix. Anal. Chim. Acta 420, 19–27 (2000). doi: 10.1016/S0003-2670(00)01013-8 CrossRefGoogle Scholar
  21. 21.
    Mazloum, M., Niassary, M.S., Amini, M.K.: Pentacyclooctaaza as a neutral carrier in coated wire ion-selective electrode for nickel(II). Sens. Actuators B Chem. 82, 259–264 (2002). doi: 10.1016/S0925-4005(01)01017-6 CrossRefGoogle Scholar
  22. 22.
    Gupta, V.K., Prasad, R., Kumar, A.: Dibenzocyclam nickel(II) ionophore in PVC matrix for Ni2+ selective sensor. Sensors 2, 384–396 (2002)CrossRefGoogle Scholar
  23. 23.
    Mashhadizadeh, M.H., Sheikhshoaie, I., Saeid-Nia, S.: Nickel(II) selective membrane potentiometric sensor using a recently synthesized Schiff base as neutral carrier. Sens. Actuators B Chem. 94, 241–246 (2003). doi: 10.1016/S0925-4005(03)00449-0 CrossRefGoogle Scholar
  24. 24.
    Mashhadizadeh, M.H., Momeni, A.: Nickel(II) selective membrane potentiometric sensor using a recently synthesized mercapto compound as a neutral carrier. Talanta 59, 47–53 (2003). doi: 10.1016/S0039-9140(02)00462-9 CrossRefGoogle Scholar
  25. 25.
    Singh, L.P., Bhatnagar, J.M.: PVC based selective sensor s for Ni2+ ion using carboxylated and methylated porphine. Sensors 3, 393–403 (2003). doi: 10.1109/JSEN.2003.815795 CrossRefGoogle Scholar
  26. 26.
    Ganjali, M.R., Hosseini, S.M., Salavati-Niasari, M., Poursaberi, T., Shamsipur, M., Javanbakht, M., et al.: Nickel ion selective coated graphite PVC membrane electrode based on benzylbis(thiosemicarbazone). Electroanalysis 14, 526–531 (2002). doi :10.1002/1521-4109(200204)14:7/8<526::AID-ELAN526>3.0.CO;2-OGoogle Scholar
  27. 27.
    Ganjali, M.R., Hosseini, S.M., Javanbakht, M., Hashemi, O.R.: Nickel(II) ion selective electrode based on 2,5-thiophenylbis(5-tert-butyl-1,3-benzooxazole). Anal. Lett. 33, 3139–3159 (2000)Google Scholar
  28. 28.
    Jain, A.K., Gupta, V.K., Ganeshpure, P.A., Raisoni, J.R.: Ni(II)-selective ion sensors of salen type Schiff base chelates. Anal. Chim. Acta 553, 177–184 (2005). doi: 10.1016/j.aca.2005.08.016 CrossRefGoogle Scholar
  29. 29.
    Belhamel, K., Ludwig, R., Benamore, M.: Nickel ion-selective PVC membrane electrode based on a new t-octyl-calix[6]arene derivative. Mikrochim. Acta 149, 145–150 (2005). doi: 10.1007/s00604-004-0292-5 Google Scholar
  30. 30.
    Mousavi, M.F., Alizadeh, N., Shamsipur, M., Zohari, N.: New PVC-based 1,10-dibenzyl-1,10-diaza-16-crown-6-selective electrode for detecting nickel (II) ion. Sens. Actuators B Chem. 66, 98–100 (2000). doi: 10.1016/S0925-4005(99)00473-6 CrossRefGoogle Scholar
  31. 31.
    Shamsipur, M., Kazemi, S.Y.: A PVC based dibenzo-diaza-15-crown-4-membrane potentiometric sensor for Ni(II). Electroanalysis 12, 1472–1475 (2000). doi :10.1002/1521-4109(200012)12:18<1472::AID-ELAN1472>3.0.CO;2-0Google Scholar
  32. 32.
    Hampton, M.D., Peters, C.A., Wellington, L.A.: Response of poly(vinyl chloride) electrode based on neutral carrier 1,4,7,10-tetraoxacyclododecane-12-crown-4. Anal. Chim. Acta 194, 171–176 (1987). doi: 10.1016/S0003-2670(00)84770-4 CrossRefGoogle Scholar
  33. 33.
    Rao, G.N., Srivastava, S., Srivastava, S.K., Singh, M.: Chelating ion exchange resin membrane sensor for nickel(II) ions. Talanta 43, 1821–1825 (1996). doi: 10.1016/0039-9140(96)01959-5 CrossRefGoogle Scholar
  34. 34.
    Luca, C., Pleniceanu, M., Muresan, N.: Liquid membrane electrode for determination of nickel. Rev. Chim 27, 1088–1090 (1976)Google Scholar
  35. 35.
    Smirnova, E.A., Petrukhin, O.M., Rogatinskaya, S.L.: Study of metal chelates involving sulphur-containing ligands as active components of liquid membranes of ion-selective electrodes. Zh. Anal. Khim 37, 2137–2142 (1982)Google Scholar
  36. 36.
    Craggs, A., Moody, G.J., Thomas, J.D.R.: PVC matrix membrane ion-selective electrodes. Construction and laboratory experiments. J. Chem. Educ. 51, 541–544 (1974)CrossRefGoogle Scholar
  37. 37.
    Khayatian, G., Shariati, S., Salimi, A.: Thallium(I)-selective membrane potentiometric sensor based on dibenzyldiaza-18-crown-6. Bull. Korean Chem. Soc. 24, 421–425 (2003)CrossRefGoogle Scholar
  38. 38.
    Katsu, T., Ido, K., Takaishi, K., Yokosu, H.: Thallium(I)-selective membrane electrodes based on calix[6]arene or calix[5]arene derivatives. Sens. Actuators B Chem. 87, 331–335 (2002). doi: 10.1016/S0925-4005(02)00264-2 CrossRefGoogle Scholar
  39. 39.
    Park, K.M., Lee, Y.H., Jin, Y., Seo, J., Yoon, I., Lee, S.C., et al.: Tetrathiaoxamacrocycles with dibenzo-subunits: a search for new Tl(I) and Ag(I) selective ionophore. Supramol. Chem. 16, 51–58 (2004). doi: 10.1080/10610270310001597737 CrossRefGoogle Scholar
  40. 40.
    Antonisse, M.M.G., Reinhoudt, D.N.: Potentiometric ion-selective sensors. Electroanalysis 11, 1035–1048 (1999). doi :10.1002/(SICI)1521-4109(199910)11:14<1035::AID-ELAN1035>3.0.CO;2-IGoogle Scholar
  41. 41.
    Shahrokhian, S., Amini, M.K., Kia, R., Tangestaninejad, S.: Salicylate-selective electrode based on Al(III) and Sn(IV). Salophens Anal. Chem. 72, 956–962 (2000). doi: 10.1021/ac990749w CrossRefGoogle Scholar
  42. 42.
    Shamsipur, M., Sadeghi, S., Naeimi, H., Sharghi, H.: Iodide ion-selective PVC membrane electrode based on a recently synthesized salen Mn(II) complex. Pol. J. Chem. 74, 231–238 (2000)Google Scholar
  43. 43.
    Kamata, S., Bhale, A., Fukunga, Y., Nurata, A.: Copper(II)-selective electrode using thiuram disulfide neutral carriers. Anal. Chem. 60, 2464–2467 (1988). doi: 10.1021/ac00173a006 CrossRefGoogle Scholar
  44. 44.
    Bakker, E., Buhlmann, P., Pretsch, E.: Carrier based ion-selective electrodes and bulk optodes. 1. General characteristics. Chem. Rev. 97, 3083–3132 (1997). doi: 10.1021/cr940394a CrossRefGoogle Scholar
  45. 45.
    Analytical Chemistry Division, I.U.P.A.C: Commission on analytical nomenclature, recommendations for nomenclature for ion-selective electrodes. Pure Appl. Chem. 48, 127–131 (1976). doi: 10.1351/pac197648010127 CrossRefGoogle Scholar
  46. 46.
    Umezawa, Y., Umezawa, K., Sato, H.: Selectivity coefficients for ion-selective electrode. Recommended methods for reporting values. Pure Appl. Chem. 67, 507–518 (1995). doi: 10.1351/pac199567030507 CrossRefGoogle Scholar
  47. 47.
    Bakker, E.: Selectivity of liquid membrane ion-selective electrodes. Electroanalysis 9, 7–12 (1997). doi: 10.1002/elan.1140090103 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Ashok Kumar Singh
    • 1
  • Prerna Singh
    • 1
  • Sameena Mehtab
    • 1
  1. 1.Department of ChemistryIndian Institute of Technology-RoorkeeRoorkeeIndia

Personalised recommendations