Synthesis, 1H-NMR conformational analysis and complexation studies of two di-imidazolyl acetamido p-tert-butylcalix[4]arenes

Original Article


The synthesis of a new di-imidazolyl-di-methoxy acetamido p-tert-butylcalix[4]arene 4 is reported. 4 has been prepared by reacting the corresponding di-methyl ester di-methoxy derivative with histamine in 1:1 mixture of methanol: toluene. The binding properties of 4 towards alkali, alkaline earth, transition (Zn2+, Co2+) and heavy (Pb2+, Cd2+) metals have been investigated along with the complexes stoichiometries. The 1H-NMR spectra of complexes show the location of cations in receptor 4. Partial cone conformation is observed only with strontium and calcium whereas the cone conformation is detected with most of the cations. Comparison of the complexation results with those obtained for di-imidazolyl acetamido p-tert-butylcalix[4]arene 3 missing the methyl groups is also reported.


Calix[4]arenes Di-amido Imidazolyl Cation complexation 


  1. 1.
    Fantoni, A.C., Maranon, J.: Conformational behaviour and alkali metal cation binding selectivity of 5, 11, 17, 23-tetra-tert-butyl [25, 26, 27, 28-tetra kis(2-pyridylmethyl) oxy]-calix[4]arene: a molecular dynamics study. Chem. Phys. 262, 359–368 (2000)CrossRefGoogle Scholar
  2. 2.
    Arduini, A., Ghidini, E., Pochini, A., Ungaro, R.: p-t-butylcalix[4]arene tetra-acetamide a new strong receptor for alcali cations. J. Incl. Phenom. Macro. Chem. 6, 119–134 (1988)CrossRefGoogle Scholar
  3. 3.
    Muzet, N., Wipff, G., Gasnati, A., Domiano, L., Ungaro, R., Ugozzoli, F.: Alkalin earth and uranyl cation complexes of a calix[4]arene-tetraamide: MD and FEP simulations in aqueous and acetonitrile solutions and X-ray structure of its Sr(Picrate) 2 complex. J. Chem. Soc. Perkin Trans 2, 1065–1075 (1996)Google Scholar
  4. 4.
    Beer, P.D., Drew, M.G.B., Leeson, P.B., Ogden, M.I.: Versatile cation complexation by a calix[4]arene tetraamide (L). Synthesis and crystal structure of [ML][ClO4]2·nMeCN (M = FeII, NiII, CuII, ZnII or PbII). J. Chem. Soc. Dalton Trans. 8, 1273–1283 (1995)CrossRefGoogle Scholar
  5. 5.
    Beer, P.D., Hesek, D., Hodacova, J., Stokes, S.E.: Acyclic redox responsive anion receptors containing amide linked cobalticinium moieties. J. Chem. Soc. Chem. Commun. 3, 270–272 (1992)CrossRefGoogle Scholar
  6. 6.
    Beer, P.D., Hazlewood, C., Hesek, D., Hodacova, J., Stokes, S.E.: Anion recognition by acyclic redox-responsive amide-linked cobaltocenium receptors. J. Chem. Soc. Dalton Trans. 8, 1327–1332 (1993)CrossRefGoogle Scholar
  7. 7.
    Beer, P.D., Drew, M.G.B., Hesek, D., Stokes, S.E.: Dicarboxylate anion recognition by a redox-responsive ditopic bis(cobalticinium) calix[4]arene receptor molecule. J. Chem. Soc. Chem. Commun. 3, 229–231 (1993)CrossRefGoogle Scholar
  8. 8.
    Pascal, R.A., Spergel, J., Van Engen, D.V.: Synthesis and X-ray crystallographic characterization of a (1,3,5)cyclophane with three amide N–H groups surrounding a central cavity. A neutral host for anion complexation. Tetrahedron Lett. 27, 4099–4102 (1986)CrossRefGoogle Scholar
  9. 9.
    Valiyaveettil, S., Engbersen, J.F.J., Verboom, W., Reinhoudt, D.N.: Synthesis and complexation studies of neutral anion receptors. Angew. Chem. Int. Ed. Engl. 32, 900–901 (1993)CrossRefGoogle Scholar
  10. 10.
    Stibor, I., Ruzickova, M., Kratky, R., Vindys, M., Havlicek, J., Pinkhassik, E., Lhotak, P.A., Mustafina, R., Morozova, Y.E., Kazakova, K., Gubskaya, P.: New calix[4]arene-based amides—their synthesis, conformation, complexation. Chem. Commun. 66, 641–662 (2001)Google Scholar
  11. 11.
    Molard, Y., Lopez, P.: Novel synthetic receptors based on para-amino-pyridine ligands coupled to p-tert-butylcalix[4]arene via amino-acid spacers. Tetrahedron Lett. 42, 4799–4802 (2001)CrossRefGoogle Scholar
  12. 12.
    Bochenska, M., Zielinska, A., Kravtsov, V.C., Gdaniec, M., Luks, E., Radecka-Paryzek, W.: Lower rim substituted tert-butylcalix[4]arenes (II). Complexing ability of 5,11,17,23-tetra-tert-butyl-25,26,27,28-tetrakis-O-(piperidinylcarbonyl) methylenecalix[4]arene. The crystal structures of the ligand and its sodium complex. Polyhedron 21, 763–768 (2002)CrossRefGoogle Scholar
  13. 13.
    Casnati, A., Sansone, F., Sartori, A., Prodi, L., Montalti, M., Zaccheroni, N., Ugozzoli, F., Ungaro, R.: Quinoline-containing calixarene fluoroionophores: a combined NMR, photophysical and modeling study. Eur. J. Org. Chem. 8, 1475–1485 (2003)CrossRefGoogle Scholar
  14. 14.
    Hamdi, A., Abidi, R., Asfari, Z., Vicens, J.: Synthesis and complexing properties of four new tetraamido-type p-tert-butyl calix[4]arenes presenting two proximal binding submits. J. Incl. Phenom. Macro. Chem. 45, 99–107 (2003)CrossRefGoogle Scholar
  15. 15.
    Hamdi, A., Abidi, R., Trabelsi, M.T., Thuéry, P., Nierlich, M., Asfari, Z., Vicens, J.: Synthesis and cation complexation studies of a new tetra(2-pyridylmethyl) amide calix[4]arene. Terahedron Lett. 42, 3595–3598 (2001)CrossRefGoogle Scholar
  16. 16.
    Stibor, I., Hafeed, D.S.M., Lhotak, P.: From the amide bond activation to simultaneous recognition of anion-cation couple. Gazz. Chim. Ital. 127, 673–685 (1997)Google Scholar
  17. 17.
    Thomas, J.-L., Howarth, J., Kennedy, A.M.: Electrochemical anion recognition by novel ferrocenyl imidazole systems. Molecules 7, 861–866 (2000)CrossRefGoogle Scholar
  18. 18.
    Szemes, F., Hesek, D., Chen, Z., Dent, S.W., Drew, M.G.B., Goulden, A.J., Graydon, A.R., Mortimer, A.J., Wear, T., Weightman, J.S., Beer, P.D.: Synthesis and characterization of novel acyclic, macrocyclic, and calix[4]arene ruthenium(II) bipyridyl receptor molecules that recognise and sense anions. Inorg. Chem. 35, 5868–5879 (1996)CrossRefGoogle Scholar
  19. 19.
    Mahouachi, M., Abidi, R., Vicens, J.: Anion complexation study by amido derivatives of p-tert-butyl calix[4]arene. J. Nano. Bio. Tech. 2, 47–50 (2005)Google Scholar
  20. 20.
    Pearson, R.G.: Recent advances in the concept of hard and soft acids and bases. J. Chem. Educ. Software 64, 561–567 (1987)CrossRefGoogle Scholar
  21. 21.
    Beer, P.D., Drew, M.G.B., Gale, P.A., Leeson, P.B., Ogden, M.I.: Structures of potassium encapsulated within the 1,3-alternate conformation of calix[4]arenes. J. Chem. Soc. Dalton Trans. 23, 3479–3485 (1994)CrossRefGoogle Scholar
  22. 22.
    Calestani, G., Ugozzoli, F., Arduini, A., Ghidini, E., Ungaro, R.: Encapsulated potassium cation in a new calix[4]arene neutral ligand: synthesis and X-ray crystal structure. J. Chem. Soc. Chem. Commun. 5, 344–346 (1987)CrossRefGoogle Scholar
  23. 23.
    Cheriaa, N., Abidi, R., Vicens, J.: Synthesis and complexing properties of four imidazolyl acetamido p-tert-butylcalix[4]arenes. J. Incl. Phenom. Macro. Chem. 60, 303–312 (2008)CrossRefGoogle Scholar
  24. 24.
    Le Clainche, L., Giorgi, M., Reinaud, O.: Novel biomimetic calix[6]arene-based copper(II) complexes. Inorg. Chem. 39, 3436–3437 (2000)CrossRefGoogle Scholar
  25. 25.
    Le Clainche, L., Giorgi, M., Reinaud, O.: Synthesis and characterization of a novel calix[4]arene-based two-coordinate copper(I) complex that is unusually resistant to dioxgen. Eur. J. Inorg. Chem. 9, 1931–1933 (2000)CrossRefGoogle Scholar
  26. 26.
    Sénèque, O., Rager, M.-N., Giorgi, M., Reinaud, O.: Supramolecular stabilization of a Tis(imidazolyl) Zn—aqua complex evidenced by x-ray analysis: a structural model for mono-zinc active sites of enzymes. J. Am. Chem. Soc. 123, 8442–8443 (2000)CrossRefGoogle Scholar
  27. 27.
    Seangprasertkij, R., Asfari, Z., Arnaud, F., Weiss, J., Vicens, J.: A Schiff base p-tert-butylcalix[4]arene. Synthesis and metal ion complexation. J. Incl. Phenom. Macro. Chem. 14, 141–147 (1992)CrossRefGoogle Scholar
  28. 28.
    Abidi, R., Oueslati, I., Amri, H., Thuery, P., Nierlich, M., Asfari, Z., Vicens, J.: Synthesis, stucture and complexing properties of new calix[4](aza) crowns. Tetrahedron Lett. 42, 1685–1689 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Laboratoire de conception moléculaire, associé au CNRSInstitut Pluridisciplinaire Hubert Curien, Ecole Chimie Polymères MatériauxStrasbourgFrance
  2. 2.Laboratoire de Chimie des Interactions Moléculaires SpécifiquesFaculté des Sciences de BizerteZarzouna-BizerteTunisie

Personalised recommendations