Skip to main content
Log in

Molecular association of benzene with a new cyclophane receptor

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Host/guest interactions in the cyclophane-2/benzene system have been investigated by absorption and fluorescence spectroscopy in dichloromethane. The cyclophane serves as a host and the benzene as a guest. Absorption and fluorescence titration experiments are carried out by holding either the concentration of the host or guest constant while varying the concentration of the other component. When the concentration of benzene is kept constant, an isostilbic point at 288 nm is observed in the fluorescence spectral data, suggesting that only two absorbing species are present in equilibrium. Keeping the concentration of cyclophane-2 constant while increasing the concentration of benzene results in a hyposchromic shift of the emission peaks in the range 275–360 nm. The shift is attributed to interaction of the cyclophane with benzene. The average association constant of cyclophane-2 with benzene, K a = 425 ± 54 M−1, obtains from fitting the absorption and the fluorescence spectral data to the Bourson et al. equation using non-linear regression analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

DCM:

Dichloromethane

References

  1. Shibahara, M., Watanabe, M., Iwanaga, T., Ideta, K., Shinmyozu, T.: Synthesis, structure, and transannular π–π interaction of multilayered [3.3]metacyclophanes. J. Org. Chem. 72, 2865–2877 (2007)

    Article  CAS  Google Scholar 

  2. Bartsch, R.A., Kus, P., Dalley, N.K., Kou, X.: A novel cyclophane–anthracene complex. Tetrahedron Lett. 43, 5017–5019 (2002)

    Article  CAS  Google Scholar 

  3. Stetson, C.M., Nishikawa, S., Purkiss, D.W., Dalley, N.K., Bartsch, R.A.: Synthesis and evaluation of new ditopic cyclophane receptors for benzoic acid. J. Phys. Org. Chem. 18, 1107–1115 (2005)

    Article  CAS  Google Scholar 

  4. Dalley, K.N., Kou, X., Bartsch, R.A., Kus, P.: Synthesis of new cyclophane host molecules and crystal structures of their compounds with hydrocarbon guests. J. Incl. Phenom. Macrocycl. Chem. 45, 139–148 (2003)

    Article  CAS  Google Scholar 

  5. Dalley, K.N., Kou, X., Bartsch, R.A., Kus, P.: Synthesis of a new cyclophane host and crystal structures of its compounds with neutral guests. J. Incl. Phenom. Mol. Recogn. Chem. 29, 323–334 (1997)

    Article  CAS  Google Scholar 

  6. Diederich, F.: Cyclophanes for complexing neutral molecules. Ang. Chem. 100, 372–396 (1988)

    Article  CAS  Google Scholar 

  7. Saigo, K., Kubo, M., Lin, R., Youda, A., Hasegawa, M.: Synthesis and complexation of a novel cyclophane. Tetrahedron Lett. 26, 1325–1328 (1985)

    Article  CAS  Google Scholar 

  8. Haeg, M.E., Whitlock, B.J., Whitlock, H.W. Jr.: Anthraquinone-based cyclophane hosts: synthesis and complexation studies. J. Am. Chem. Soc. 111, 692–696 (1989)

    Article  CAS  Google Scholar 

  9. Denti, T.Z., Mordasini van Gunsteren, W.F., Diederich, F.: Computer simulations of the solvent dependence of apolar association strength: Gibbs free energy calculations on a cyclophane-pyrene complex in water and chloroform. J. Am. Chem. Soc. 118, 6044–6051 (1996)

    Article  CAS  Google Scholar 

  10. Kind, C., Reiher, M., Roder, J., Hess, B.A.: A quantum chemical study on the stability of [3n]-allenophanes (n = 2−4). Phys. Chem. Chem. Phys. 2, 2205–2210 (2000)

    Article  CAS  Google Scholar 

  11. Chang, C.E., Gilson, M.K.: Free energy, entropy, and induced fit in host-guest recognition: calculations with the second-generation mining minima algorithm. J. Am. Chem. Soc. 126, 13156–13164 (2004)

    Article  CAS  Google Scholar 

  12. Jorgensen, W.L., Nguyen, T.B., Sanford, E.M., Chao, I., Houk, K.N., Diederich, F.: Enhanced view of structure and binding for cyclophane–arene complexes through joint theoretical and experimental study. J. Am. Chem. Soc. 114, 4003–4004 (1992)

    Article  CAS  Google Scholar 

  13. Turker, L.: The tautomeric forms of a cyclophane system and some of their spectral properties: a theoretical study. Theochem 636, 133–141 (2003)

    Article  CAS  Google Scholar 

  14. Ferguson, S.B., Seward, E.M., Diederich, F., Sanford, E.M., Chou, A., Inocencio-Szweda, P., Knobler, C.B.: Strong enthalpically driven complexation of neutral benzene guests in aqueous solution. J. Org. Chem. 53, 5593–5595 (1988)

    Article  CAS  Google Scholar 

  15. Kunsagi-Mate, S., Szabo, K., Bitter, I., Nagy, G., Kollar, L.: Unexpected effect of charge density of the aromatic guests on the stability of calix[6]arene-phenol host–guest complexes. J. Phys. Chem. 109, 5237–5242 (2005)

    CAS  Google Scholar 

  16. O’Brien, M., Smalley, R., Amonge, A., Raber, S., Starosota, A., Buthelezi, T., Bartsch, R.A., Wegiel, M.: Spectroscopic properties of cyclophane/anthracene and cyclophane/9-fluorenone complexes in dichloromethane. Microchem. J. 80, 55–63 (2005)

    Article  CAS  Google Scholar 

  17. Steed, J.W., Atwood, J.L.: Supramolecular Chemistry. Wiley, Chichester, New York (2000)

    Google Scholar 

  18. Falahatpisheh, M.H., Kerzee, J.K., Metz, R.P., Donnelly, K.C., Ramos, K.S.: Inducible cytochrome P450 activities in renal glomerular mesangial cells: biochemical basis for antagonistic interactions among nephrocarcinogenic polycyclic aromatic hydrocarbons. J. Carcinogen. 3, (2004)

    Article  Google Scholar 

  19. Sanyal, M.K., Mercan, D., Belanger, K., Santella, R.M.: DNA adducts in human placenta exposed to ambient environment and passive cigarette smoke during pregnancy. Birth Defects Res. A Clin. Mol. Teratol. 79, 289–294 (2007)

    Article  CAS  Google Scholar 

  20. Ludwig, R.: Calixarenes in analytical and separation chemistry. Fresenius J. Anal. Chem. 367, 103–128 (2000)

    Article  CAS  Google Scholar 

  21. Castro, R., Davidov, P.D., Kumar, K.A., Marchand, A.P., Evanseck, J.D., Kaifer, A.E.: Inclusion complexation of cyclobis (Paraquat P Phenylene) and related cyclophane derivatives with substituted aromatics: cooperative noncovalent cavity and external interactions. J. Phys. Org. Chem. 10, 369–382 (1997)

    Article  CAS  Google Scholar 

  22. Bourson, J., Pouget, J., Valeur, B.: Ion-responsive fluorescent compounds. 4. Effect of cation binding on the photophysical properties of a coumarin linked to monoaza- and diaza-crown ethers. J. Phys. Chem. 97, 4552–4557 (1993)

    Article  CAS  Google Scholar 

  23. PCModel V9.0, Molecular Modeling Software, Serena Software, Bloomington, IN (2004)

Download references

Acknowledgements

This work was financially supported by the NSF-MRI grant-0421228 and the Materials Characterization Center at Western Kentucky University. CD and RG wish to acknowledge the KY NSF-EPSCoR Scholar Program, and the NSF-REU Grant EAR-035361 for support of their research. The research conducted at Texas Tech University was supported by Grant D-0775 from The Welch Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thandi Buthelezi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davies, C., Ren, L., Gustafson, R. et al. Molecular association of benzene with a new cyclophane receptor. J Incl Phenom Macrocycl Chem 61, 347–352 (2008). https://doi.org/10.1007/s10847-008-9428-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-008-9428-2

Keywords

Navigation