Advertisement

Molecular association of benzene with a new cyclophane receptor

  • Christopher Davies
  • Li Ren
  • Ryan Gustafson
  • Thandi Buthelezi
  • Richard A. Bartsch
  • Malgorzata Surowiec
Original Article

Abstract

Host/guest interactions in the cyclophane-2/benzene system have been investigated by absorption and fluorescence spectroscopy in dichloromethane. The cyclophane serves as a host and the benzene as a guest. Absorption and fluorescence titration experiments are carried out by holding either the concentration of the host or guest constant while varying the concentration of the other component. When the concentration of benzene is kept constant, an isostilbic point at 288 nm is observed in the fluorescence spectral data, suggesting that only two absorbing species are present in equilibrium. Keeping the concentration of cyclophane-2 constant while increasing the concentration of benzene results in a hyposchromic shift of the emission peaks in the range 275–360 nm. The shift is attributed to interaction of the cyclophane with benzene. The average association constant of cyclophane-2 with benzene, K a = 425 ± 54 M−1, obtains from fitting the absorption and the fluorescence spectral data to the Bourson et al. equation using non-linear regression analysis.

Keywords

Aromatic compounds Association constant Cyclophane Host/guest complexation 

Abbreviation

DCM

Dichloromethane

Notes

Acknowledgements

This work was financially supported by the NSF-MRI grant-0421228 and the Materials Characterization Center at Western Kentucky University. CD and RG wish to acknowledge the KY NSF-EPSCoR Scholar Program, and the NSF-REU Grant EAR-035361 for support of their research. The research conducted at Texas Tech University was supported by Grant D-0775 from The Welch Foundation.

References

  1. 1.
    Shibahara, M., Watanabe, M., Iwanaga, T., Ideta, K., Shinmyozu, T.: Synthesis, structure, and transannular π–π interaction of multilayered [3.3]metacyclophanes. J. Org. Chem. 72, 2865–2877 (2007)CrossRefGoogle Scholar
  2. 2.
    Bartsch, R.A., Kus, P., Dalley, N.K., Kou, X.: A novel cyclophane–anthracene complex. Tetrahedron Lett. 43, 5017–5019 (2002)CrossRefGoogle Scholar
  3. 3.
    Stetson, C.M., Nishikawa, S., Purkiss, D.W., Dalley, N.K., Bartsch, R.A.: Synthesis and evaluation of new ditopic cyclophane receptors for benzoic acid. J. Phys. Org. Chem. 18, 1107–1115 (2005)CrossRefGoogle Scholar
  4. 4.
    Dalley, K.N., Kou, X., Bartsch, R.A., Kus, P.: Synthesis of new cyclophane host molecules and crystal structures of their compounds with hydrocarbon guests. J. Incl. Phenom. Macrocycl. Chem. 45, 139–148 (2003)CrossRefGoogle Scholar
  5. 5.
    Dalley, K.N., Kou, X., Bartsch, R.A., Kus, P.: Synthesis of a new cyclophane host and crystal structures of its compounds with neutral guests. J. Incl. Phenom. Mol. Recogn. Chem. 29, 323–334 (1997)CrossRefGoogle Scholar
  6. 6.
    Diederich, F.: Cyclophanes for complexing neutral molecules. Ang. Chem. 100, 372–396 (1988)CrossRefGoogle Scholar
  7. 7.
    Saigo, K., Kubo, M., Lin, R., Youda, A., Hasegawa, M.: Synthesis and complexation of a novel cyclophane. Tetrahedron Lett. 26, 1325–1328 (1985)CrossRefGoogle Scholar
  8. 8.
    Haeg, M.E., Whitlock, B.J., Whitlock, H.W. Jr.: Anthraquinone-based cyclophane hosts: synthesis and complexation studies. J. Am. Chem. Soc. 111, 692–696 (1989)CrossRefGoogle Scholar
  9. 9.
    Denti, T.Z., Mordasini van Gunsteren, W.F., Diederich, F.: Computer simulations of the solvent dependence of apolar association strength: Gibbs free energy calculations on a cyclophane-pyrene complex in water and chloroform. J. Am. Chem. Soc. 118, 6044–6051 (1996)CrossRefGoogle Scholar
  10. 10.
    Kind, C., Reiher, M., Roder, J., Hess, B.A.: A quantum chemical study on the stability of [3n]-allenophanes (n = 2−4). Phys. Chem. Chem. Phys. 2, 2205–2210 (2000)CrossRefGoogle Scholar
  11. 11.
    Chang, C.E., Gilson, M.K.: Free energy, entropy, and induced fit in host-guest recognition: calculations with the second-generation mining minima algorithm. J. Am. Chem. Soc. 126, 13156–13164 (2004)CrossRefGoogle Scholar
  12. 12.
    Jorgensen, W.L., Nguyen, T.B., Sanford, E.M., Chao, I., Houk, K.N., Diederich, F.: Enhanced view of structure and binding for cyclophane–arene complexes through joint theoretical and experimental study. J. Am. Chem. Soc. 114, 4003–4004 (1992)CrossRefGoogle Scholar
  13. 13.
    Turker, L.: The tautomeric forms of a cyclophane system and some of their spectral properties: a theoretical study. Theochem 636, 133–141 (2003)CrossRefGoogle Scholar
  14. 14.
    Ferguson, S.B., Seward, E.M., Diederich, F., Sanford, E.M., Chou, A., Inocencio-Szweda, P., Knobler, C.B.: Strong enthalpically driven complexation of neutral benzene guests in aqueous solution. J. Org. Chem. 53, 5593–5595 (1988)CrossRefGoogle Scholar
  15. 15.
    Kunsagi-Mate, S., Szabo, K., Bitter, I., Nagy, G., Kollar, L.: Unexpected effect of charge density of the aromatic guests on the stability of calix[6]arene-phenol host–guest complexes. J. Phys. Chem. 109, 5237–5242 (2005)Google Scholar
  16. 16.
    O’Brien, M., Smalley, R., Amonge, A., Raber, S., Starosota, A., Buthelezi, T., Bartsch, R.A., Wegiel, M.: Spectroscopic properties of cyclophane/anthracene and cyclophane/9-fluorenone complexes in dichloromethane. Microchem. J. 80, 55–63 (2005)CrossRefGoogle Scholar
  17. 17.
    Steed, J.W., Atwood, J.L.: Supramolecular Chemistry. Wiley, Chichester, New York (2000)Google Scholar
  18. 18.
    Falahatpisheh, M.H., Kerzee, J.K., Metz, R.P., Donnelly, K.C., Ramos, K.S.: Inducible cytochrome P450 activities in renal glomerular mesangial cells: biochemical basis for antagonistic interactions among nephrocarcinogenic polycyclic aromatic hydrocarbons. J. Carcinogen. 3, (2004)CrossRefGoogle Scholar
  19. 19.
    Sanyal, M.K., Mercan, D., Belanger, K., Santella, R.M.: DNA adducts in human placenta exposed to ambient environment and passive cigarette smoke during pregnancy. Birth Defects Res. A Clin. Mol. Teratol. 79, 289–294 (2007)CrossRefGoogle Scholar
  20. 20.
    Ludwig, R.: Calixarenes in analytical and separation chemistry. Fresenius J. Anal. Chem. 367, 103–128 (2000)CrossRefGoogle Scholar
  21. 21.
    Castro, R., Davidov, P.D., Kumar, K.A., Marchand, A.P., Evanseck, J.D., Kaifer, A.E.: Inclusion complexation of cyclobis (Paraquat P Phenylene) and related cyclophane derivatives with substituted aromatics: cooperative noncovalent cavity and external interactions. J. Phys. Org. Chem. 10, 369–382 (1997)CrossRefGoogle Scholar
  22. 22.
    Bourson, J., Pouget, J., Valeur, B.: Ion-responsive fluorescent compounds. 4. Effect of cation binding on the photophysical properties of a coumarin linked to monoaza- and diaza-crown ethers. J. Phys. Chem. 97, 4552–4557 (1993)CrossRefGoogle Scholar
  23. 23.
    PCModel V9.0, Molecular Modeling Software, Serena Software, Bloomington, IN (2004)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Christopher Davies
    • 1
  • Li Ren
    • 1
  • Ryan Gustafson
    • 1
  • Thandi Buthelezi
    • 1
  • Richard A. Bartsch
    • 2
  • Malgorzata Surowiec
    • 2
  1. 1.Department of ChemistryWestern Kentucky UniversityBowling GreenUSA
  2. 2.Department of Chemistry and BiochemistryTexas Tech UniversityLubbockUSA

Personalised recommendations