Linearly polarized IR-spectroscopy of partially oriented solids as a colloid suspension in nematic host: a tool for spectroscopic and structural elucidation of the embedded chemicals

  • B. B. Koleva
  • T. M. Kolev
  • V. Simeonov
  • T. Spassov
  • M. Spiteller
Original Article


Colloid suspensions in nematic liquid crystal were employed for the first time in 2004 as a tool for the partial orientation of solids, to be examined by linearly polarized IR-(IR-LD) spectroscopy. It has been found is found that a partial orientation (15–20%) of suspended particles, is adequate for the recording of reasonable linearly polarized IR-spectra is achieved when: 5 ± 1% by weight of the given solid compound (organic, inorganic, transition metal complex or glass) with particle size within the limits 0.3–0.9 μm is mixed with a nematic liquid crystal substance (ZLI 1695, ZLI 1538 or MLC 6815) suitable for IR spectroscopy and the slightly viscous suspension obtained is phase pressed between two KBr-plates. These latter are roughened in one direction prior to use with fine sandpaper (C800) (size 5 μm). Then, the KBr-plattes and pressed suspension are moved repeatedly with 3 μm/s for 100 times. The optimal cell thickness is 100 μm. If mathematical procedures are used for polarized IR-spectra interpretation, then it is possible to perform structural elucidation of the embedded compounds, independently of their melting point, crystalline or amorphous state, and the quality of the monocrystals or polycrystalline of the e sample. The method permits the study of organic and inorganic compounds, transition metal complexes and glasses. Here we will discuss the fundamental questions concerning the above state such as the morphology of the suspended particles, the particle size, the influence of the physical chemistry properties of liquid crystal medium on the degree of orientation of suspended particles; the velocity of the shearing of the suspension, the degree of the roughening of the KBr-plates and their effects on the degree of orientation, the influence of the space group on the orientation parameter, the nature and balance of the forces acting on the suspended particles; their degree of orientation, the mathematical model used. Conventional and linearly polarized IR-spectroscopy and electron microscopy are used for elucidation of these points. Statistical approaches have also been applied in order to estimate the impact of the experimental parameters (size, velocity, thickness) on the IR-signal for each of the 13 systems studied. An experimental design of the type involving full factorial design on two levels of variation of the input factors is presented.


IR-LD spectroscopy Colloid suspensions Nematic liquid crystal Orientation distribution Morphology Particle size Electron microscopy Structural elucidation 



B. K. wishes to thank the Alexander von Humboldt Foundation for the Fellowship. T. K. shows appreciation to the Alexander von Humboldt Foundation and DD.

Supplementary material

10847_2008_9425_MOESM1_ESM.doc (374 kb)
(DOC 373 kb)


  1. 1.
    Soville, D.A., Russel, W.B., Schowaiter, W.R.: Colloidal dispersions. Cambridge University Press, Cambridge (1989)Google Scholar
  2. 2.
    Ruhwandl, A.P., Zukoski, E.M.: Electrorheological fluids as colloidal suspensions. Adv. Collid. Interface Sci. 30, 153 (1989)CrossRefGoogle Scholar
  3. 3.
    Poulin, P., Stark, H., Lubensky, T.C., Weitz, D.A.: Novel colloidal interactions in anisotropic fluids. Science 275, 1770 (1997)CrossRefGoogle Scholar
  4. 4.
    Poulin, P., Frances, N., Mondain-Monval, O.: Suspension of spherical particles in nematic solutions of disks and rods. Phys. Rev. E 59, 4384 (1999)Google Scholar
  5. 5.
    Borstnik, A., Stark, H., Zumer, S.: Interaction of spherical particles dispersed in a liquid crystal above the nematic-isotropic phase transition. Phys. Rev. E 60, 4210 (1999)Google Scholar
  6. 6.
    Lev, B.I., Aoki, K.M., Tomchuk, P.M., Yokoyama, H.: Structure formation of colloids in nematic liquid crystals. Condens. Matter Phys. 6, 169 (2003)Google Scholar
  7. 7.
    Feng J.J., Zhou, Ch.: A mean-field study of defects near colloidal particles in a nematic liquid crystal. J. Colloid Interface Sci. 269, 72 (2004)CrossRefGoogle Scholar
  8. 8.
    Terentjev, E.M.: Disclination loops, standing alone and around solid particles, in nematic liquid crystals. Phys. Rev. E 51, 1330 (1995)CrossRefGoogle Scholar
  9. 9.
    Stark, H.: Numerical investigation of liquid crystal colloids using a continuum description. Phys. Rev. 351, 387 (2001)Google Scholar
  10. 10.
    Loudet, J-C., Barois, P., Poulin, P.: Colloidal ordering from phase separation in a liquid crystalline continuous phase. Nat. Lond. 407, 611 (2000)CrossRefGoogle Scholar
  11. 11.
    Meeker, S.P., Poon, W.C.K., Crain, J., Terentjev, E.M.: Colloid-liquid-crystal composites: an unusual soft solid. Phys. Rev. E 61, R6083 (2000)Google Scholar
  12. 12.
    Nazarenko, V.G., Nych, A.B., Lev, B.I.: Crystal structure in nematic emulsion. Phys. Rev. Lett. 87, 075504 (2001)CrossRefGoogle Scholar
  13. 13.
    Stark, H.: Saturn-ring defects around microspheres suspended in nematic liquid crystals: an analogy between confined geometries and magnetic fields. Phys. Rev. E 66, 032701 (2002)CrossRefGoogle Scholar
  14. 14.
    Ivanova, B.B., Arnaudov, M.G., Bontchev, P.R.: Linear-dichroic infrared spectral analysis of Cu(I)-homocysteine complex. Spectrochim. Acta 60A, 855 (2004)Google Scholar
  15. 15.
    Michl J., Thulstrup E.W.: Spectroscopy with polarized light. Solute alignment by photoselection, in liquid crystals, polymers, and membranes. VCH Publishers, New York (1986)Google Scholar
  16. 16.
    Thulstrup, E.W., Eggers, J.H.: Moment directions of the electronic transitions of fluoranthene. Chem. Phys. Lett. 1, 690 (1996)CrossRefGoogle Scholar
  17. 17.
    Thulstrup, E.W., Thulstrup, P.W.: Polarization spectroscopic studies of ordered molecules. Acta Chim. Slov. 52, 371 (2005)Google Scholar
  18. 18.
    Frushour, B.G., Painter, P.C., Koening, J.L.: Vibrational spectra of polypeptides. J. Macromol. Sci. C15, 29 (1976)Google Scholar
  19. 19.
    Jasse, B., Koening, J.L.: Orientational measurements in polymers using vibrational spectroscopy. J. Macromol. Sci. C17, 61 (1979)Google Scholar
  20. 20.
    Zbinden R.: Infrared spectroscopy of high polymers. Academic Press, New York (1964)Google Scholar
  21. 21.
    Siesler H.W.: Characterization of polymer deformation by vibrational spectroscopy. In: Orientated polymer materials. Chap. 4, St. Fakirov (ed.) Huethling Wepf Verlag Zug. Heidelberg, Oxford CT, USA, (1996)Google Scholar
  22. 22.
    Ivanova, B.B.: Solid state linear dichroic infrared spectral analysis of benzimidazoles and their N1-protonated salts. Spectrochim. Acta 62A, 58 (2005)Google Scholar
  23. 23.
    Ivanova, B.B., Mayer-Figge, H.: Crystal structure. and solid state IR-LD analysis of a mononuclear Cu(II) complex of 4-aminopzridine. J. Coord. Chem. 58, 653 (2005)CrossRefGoogle Scholar
  24. 24.
    Ivanova, B.B.: Monoclinic and orthorhombic polymorphs of paracetamol—solid state linear dichroic infrared spectral analysis. J. Mol. Struct. 738, 233 (2005)CrossRefGoogle Scholar
  25. 25.
    Bakalska R., Ivanova B.B., Kolev, Ts.: Solid-state IR-LD spectroscopy of codeine, N-norcodeine derivatives. Cent. Eur. J. Chem. 4, 533 (2006)CrossRefGoogle Scholar
  26. 26.
    Ivanova, B.B.: Stereo-structural and IR-spectral characterization of histidine containing dipeptides by means of solid-state IR-LD spectroscopy and ab initio calculations. J. Mol. Struct. 782, 122 (2006)CrossRefGoogle Scholar
  27. 27.
    Ivanova, B.B., Kolev, T., Zareva, S.Y.: Mononuclear Au(III)-complexes with tryptophan-containing dipeptides: Synthesis, spectroscopic and structural elucidation. Biopolymers 82, 587 (2006)CrossRefGoogle Scholar
  28. 28.
    Kolev, T.: Solid-state IR-LD spectroscopic and theoretical analysis. of arginine-containing peptides. Biopolymers 83, 39 (2006)CrossRefGoogle Scholar
  29. 29.
    Kolev, T., Koleva, B., Shivachev, B.: Oriented solids as a colloid suspension in nematic liquid crystal as a new tool for IR-spectroscopic and structural elucidation of inorganic compounds and glasses. Inorg. Chim. Acta (2007, in press)Google Scholar
  30. 30.
    Ivanova, B.B., Tsalev, D.L., Arnaudov, M.G.: Validation of reducing-difference procedure in IR-solid mixtures. Talanta 69, 822 (2006)CrossRefGoogle Scholar
  31. 31.
    Ivanova, B.B., Simeonov, V.D., Arnaudov, M.G., Tsalev, D.L.: Linear-dichroic infrared spectroscopy—validation and experimental design of the new orientation technique of solid samples as suspension in nematic liquid crystal. Spectrochim. Acta 67A, 66 (2007)Google Scholar
  32. 32.
    Forest, M.G., Hong, Q., Zhou, Z.R.: Compare Couette versus Poiseuille flow. J. Rheol. 48, 175 (2004)CrossRefGoogle Scholar
  33. 33.
    Poulin, P., Raghunathan, V.A., Richetti, P., Roux, D.: Colloidal inclusions in liquid crystals. J. Phys. II 4, 1557 (1994)CrossRefGoogle Scholar
  34. 34.
    Andrienko, D., Tasinkevych, M., Dietrich, S.: Effective pair interactions between colloidal particles at a nematic-isotropic interface. Europhys. Lett. 70, 95 (2005)CrossRefGoogle Scholar
  35. 35.
    West, J.L., Zhang, K., Glushchenko, A., Andrienko, D., Tasinkevych, M., Reznikov, Y.: Colloidal particles at a nematic-isotropic interface: effects of confinement. arXiv:cond-mat/0606169 v1 7 Jun 2006Google Scholar
  36. 36.
    Smalyukh, I.I., Lavrentovich, O.D., Kuzmin, A.N., Kachynski, A.V., Prasad, P.N.: Elasticity-mediated self-organization and colloidal interactions of solid spheres with tangential anchoring in a nematic liquid crystal. arXiv:cond-mat/0508331 v1 13 Aug 2005Google Scholar
  37. 37.
    Andrienko, D., Tasinkevych, M., Patrıcio, P., M.M. Telo da Gama. arXiv:cond-mat/0312203 v1 8 Dec 2003Google Scholar
  38. 38.
    Vollmer, D., Hinze, G., Poon, W.C.K., Cleaver, J., Cates, M.E.: The origin of network formation in colloidliquid crystal composites. J. Phys. Condens. Matter 16, L227 (2004)CrossRefGoogle Scholar
  39. 39.
    Stark, H., Fukuda, J., Yokoyama, H.: Capillary condensation in liquid-crystal colloids. Phys. Rev. Lett. 92, 205502 (2004)CrossRefGoogle Scholar
  40. 40.
    Kalyon, D.M., Yaras, P., Aral, B., Yilmazer, U.: Rheological behavior of concentrated suspensions: a solid rocket fuel stimulant. J. Rheol. 37, 35 (1993)CrossRefGoogle Scholar
  41. 41.
    West, J.L., Glushchenko, A., Liao, G., Reznikov, Y., Andrienko, D., Allen, M.P.: Drag on particles in a nematic suspension by a moving nematic-isotropic interface. Phys. Rev. E 66, 012702 (2002)CrossRefGoogle Scholar
  42. 42.
    Lubensky, T.C., Pettey, D., Currier, N., Stark, H.: Topological defects and interactions in nematic emulsions. Phys. Rev. E 57, 610 (1998)CrossRefGoogle Scholar
  43. 43.
    Stark, H.: Director field configurations around a spherical particle in a nematic liquid crystal. Eur. Phys. J. B 10, 311 (1999)CrossRefGoogle Scholar
  44. 44.
    Spanget-Larsen, J.: Infrared linear-dichroism spectroscopy of 1,8-dihydroxy-9,10-anthraquinone aligned in stretched polyethylene. SPIE 1575, 404 (1992)CrossRefGoogle Scholar
  45. 45.
    Jordanov, B., Nentchovska, R., Schrader, B.: FT-IR linear dichroic solute spectra of nematic solutions as a tool for IR band assignment. J. Mol. Struct. 297. 401 (1993)CrossRefGoogle Scholar
  46. 46.
    Jordanov, B., Schrader, B.: Reduced IR-LD spectra of substances oriented as nematic solutions. J. Mol. Struct. 347, 389 (1995)CrossRefGoogle Scholar
  47. 47.
    Kolev, T., Glavcheva, Z., Yancheva, D., Schuermann, M., Kleb, D.-Chr., Preut, H., Bleckmann, P.: Triclinic form of 2-{5,5-dimethyl-3-[2-(2,4,6-trimethoxyphenyl)vinyl]cyclohex-2-enylidene}malononitrile. Acta Crystallogr. E57, o966 (2001)Google Scholar
  48. 48.
    Kolev, T., Glavcheva, Z., Yancheva, D., Schuermann, M., -Chr. Kleb, D., Preut, H., Bleckmann, P.: Monoclinic form of 2-{5,5-dimethyl-3-[2-(2,4,6-trimethoxyphenyl)vinyl]cyclohex-2-enylidene}malononitrile. Acta Crystallogr. E57, o964 (2001)Google Scholar
  49. 49.
    Kolev, T., Koleva, B.B., Spassov, T., Cherneva, E., Spiteller, M., Mayer-Figge, H., Sheldrick, W.S.: Synthesis, spectroscopic, thermal and structural elucidation of 5-amino-2-methoxypyridine ester amide of squaric acid ethyl ester: a new material with an infinite pseudo-layered structure and manifested NLO application. J. Mol. Struct. (2007, in press)Google Scholar
  50. 50.
    Haisa, M., Kashino, S., Maeda, H.: The orthorhombic form of p-hydroxyacetanilide. Acta Crystallogr. 30B, 2510 (1974)Google Scholar
  51. 51.
    Nichols, G., Frampton, C.S.: Physicochemical characterization of the orthorhombic polymorph of paracetamol crystallized from solution. J. Pharm. Sci. 87, 684 (1998)CrossRefGoogle Scholar
  52. 52.
    Marsh, R.E.: A refinement of the crystal structure of glycine. Acta Crystallogr. 11, 654 (1958)CrossRefGoogle Scholar
  53. 53.
    Legros, J.-P., Kvick, A.: Deformation electron density of α-glycine at 120 K. Acta Crystallogr. 36B, 3052 (1980)Google Scholar
  54. 54.
    Shimon, L.J.W., Lahav, M., Leiserowitz, L.: Stereoselective etchants for molecular crystals. Resolution of enantiomorphs and assignment of absolute structure of chiral molecules and polar crystals. New J. Chem. 10, 723 (1986)Google Scholar
  55. 55.
    Langan, P., Mason, S.A., Myles, D., Schoenborn, B.P.: Structural characterization of crystals of α-glycine during anomalous electrical behaviour. Acta Crystallogr. 58B, 728 (2002)Google Scholar
  56. 56.
    Boldyreva, E.V., Drebushchak, T.N., Shutova, E.S.: Structural distortion of the α, β, and γ polymorphs of glycine on cooling. Z. Kristallogr. 218, 366 (2003)CrossRefGoogle Scholar
  57. 57.
    Benedetti, E., Pedone, C., Sirigu, A.: The crystal structure of DL-isoleucine and structural relations between racemic and optically active pairs in some amino acids. Acta Crystallogr. 29B, 730 (1973)Google Scholar
  58. 58.
    Ivanova, B.B.: Solid state linear-dichroic infrared spectral analysis of dipeptide l-Phe-l-Phe and its mononuclear Au(III)-complex. J. Coord. Chem. 58(7) 587 (2005)CrossRefGoogle Scholar
  59. 59.
    Ivanova, B.B.: Solid state linear-dichroic infrared (IR-LD) spectral characterization of α- and β-polymorphs of glycine. Cent. Eur. J. Chem. 4, 111 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • B. B. Koleva
    • 1
  • T. M. Kolev
    • 2
  • V. Simeonov
    • 3
  • T. Spassov
    • 4
  • M. Spiteller
    • 2
  1. 1.Faculty of ChemistryRuhr-University BochumBochumGermany
  2. 2.Institute of Environmental ResearchUniversity of DortmundDortmundGermany
  3. 3.Faculty of Chemistry, Department of Analytical ChemistryUniversity of Sofia “St. Kl. Ohridsky”SofiaBulgaria
  4. 4.Faculty of Chemistry, Department of Applied Inorganic ChemistryUniversity of Sofia “St. Kl. Ohridsky”SofiaBulgaria

Personalised recommendations