Interaction between cucurbit[8]uril and viologen derivatives

  • Xin Xiao
  • Zhu Tao
  • Sai-Feng Xue
  • Qian-Jiang Zhu
  • Jian-Xin Zhang
  • Geoffrey A. Lawrance
  • Burkhard Raguse
  • Gang Wei
Original Article


The interaction between cucurbit[8]uril (Q[8]) and a series of symmetric viologen derivatives having aliphatic substituents of variable length [N,N′-dialkyl-4,4′-bipyridinium dianions; alkyl = CH3(CH2) n –, n = 0 (MV2+), 1 (EV2+), 2 (PV2+), 3 (BV2+), 4 (FV2+), 5 (HV2+) or 6 (SV2+); BPY2+ = diprotonated 4,4-bipyridine], determined by 1H NMR and electronic absorption spectroscopy methods, is described. Some different binding models were observed in this work when compared to the interactions between cucurbit[7]uril (Q[7]) and these guests. The experimental results revealed that the binding site of the guests by Q[8] depended strongly on the length of the aliphatic substituents on the 4,4′-bipyridinium nucleus. While a 1:2 complex was observed for Q[8]-BPY2+ under acidic conditions, a 1:1 complex was formed for Q[8]-viologen derivatives with chains shorter than four carbon atoms. However, multiple Q[8] molecules could be threaded on the longer-chain FV2+, HV2+ or SV2+ molecules to form 2:1 and even possibly 3:1 complexes.


Cucurbit[8]uril Viologen derivatives Binding models 1H NMR spectroscopy Electronic absorption spectroscopy 



Support of the National Natural Science Foundation of China (NSFC; No. 20662003), the International Collaborative Project Fund of the Chinese Ministry of Science and Technology (Grant No. 2003DF000030), the “Chun-Hui” Fund and the America and Pacific Region Research Collaboration Fund of the Chinese Ministry of Education, the Science and Technology Fund of Guizhou Province (Grant No. J-2005-2012) and the Governor Foundation of Guizhou Province, P.R. China, are gratefully acknowledged.

Supplementary material

10847_2007_9405_MOESM1_ESM.doc (327 kb)
(DOC 327 KB)


  1. 1.
    Kim, J., Jung, I.-S., Kim, S.-Y., Lee, E., Kang, J.-K., Sakamoto, S., Yamaguchi, K., Kim, K.: New cucurbituril homologues: syntheses, isolation, characterization, and X-ray crystal structures of cucurbit[n]uril (n = 5, 7, and 8). J. Am. Chem. Soc. 122, 540–541 (2000)CrossRefGoogle Scholar
  2. 2.
    Day, A.I., Arnold, A.P., Blanch, R.J., Snushall, B.: Controlling factors in the synthesis of cucurbituril and its homologues. J. Org. Chem. 66, 8094–8100 (2001)CrossRefGoogle Scholar
  3. 3.
    Day, A.I., Blanch, R.J., Arnold, A.P., Lorenzo, S., Lewis, G.R., Dance, I.: A cucurbituril-based gyroscane: a new supramolecular form. Angew. Chem. Int. Ed. Engl. 41, 275–277 (2002)CrossRefGoogle Scholar
  4. 4.
    Freeman, W.A., Mock, W.L., Shih, N.Y.: Cucurbituril. J. Am. Chem. Soc. 103, 7367–7368 (1981)CrossRefGoogle Scholar
  5. 5.
    Lagona, J., Mukhopadhyay, P., Chakrabarti, S., Isaacs, L.: The cucurbit[n]uril family. Angew. Chem. Int. Ed. 44, 4844–4870 (2005)CrossRefGoogle Scholar
  6. 6.
    Lee, J.W., Samal, S., Selvapalam, N., Kim, H.J., Kim, K.: Cucurbituril homologues and derivatives: new opportunities in supramolecular chemistry. Acc. Chem. Res. 36, 621–630 (2003)CrossRefGoogle Scholar
  7. 7.
    Gerasko, O.A., Samsonenko, D.G., Fedin, V.P.: Supramolecular chemistry of cucurbituril. Russ. Chem. Rev. 71, 741–760 (2002)CrossRefGoogle Scholar
  8. 8.
    Elemans, J.A.A.W., Rowan, A.E., Nolte, R.J.M.: Self-assembled architectures from glycoluril. Ind. Eng. Chem. Res. 39, 3419–3428 (2000)CrossRefGoogle Scholar
  9. 9.
    Hubin, T.J., Kolchinski, A.G., Vance, A.L., Busch, D.H.: Template control of supramolecular architecture. Adv. Supramol. Chem. 5, 237–357 (1999)Google Scholar
  10. 10.
    Fu, H.Y., Xue, S.F., Mu, L., Du, Y., Zhu, Q.J., Tao, Z., Zhang, J.X.: Host–guest complexes of cucurbit[8]uril with phenanthrolines and some methyl derivatives. Sci. China Ser. B: Chem. 48, 305–314 (2005)CrossRefGoogle Scholar
  11. 11.
    Hou, Z.-S., Tan, Y.-B., Xu, J., Zhou, Q.-F.: Synthesis and study of novel pseudorotaxane. Supramolecular self-assemblies of cucurbituril[6] and butyl viologen. Youji Huaxue 25, 934–939 (2005)Google Scholar
  12. 12.
    Yuan, L., Wang, R., Macarthey, D.H.: Binding modes of cucurbit[6]uril and cucurbit[7]uril with a tetracationic bis(viologen) guest. J. Org. Chem. 72, 4539–4542 (2007)CrossRefGoogle Scholar
  13. 13.
    Kuz’mina, L.G., Vedernikov, A.I., Lobova, N.A., Howard, J.A.K., Strelenko, Y.A., Fedin, V.P., Alfimov, M.V., Gromov, S.P.: Photoinduced and dark complexation of unsaturated viologen analogues containing two ammonium tails with cucurbit[8]uril. New J. Chem. 30, 458–466 (2006)CrossRefGoogle Scholar
  14. 14.
    Bush, M.E., Bouley, N.D., Urbach, A.R.: Charge-mediated recognition of N-terminal tryptophan in aqueous solution by a synthetic host. J. Am. Chem. Soc. 127, 14511–14517 (2005)CrossRefGoogle Scholar
  15. 15.
    Liu, S., Ruspic, C., Mukhopashyay, P., Chakrabarti, S., Zavalij, P.Y., Isaacs, L.: The cucurbit[n]uril family: prime components for self-sorting systems. J. Am. Chem. Soc. 127, 15959–15967 (2005)CrossRefGoogle Scholar
  16. 16.
    Jeon, W.S., Kim, H.-J., Lee, C., Kim, K.: Control of the stoichiometry in host–guest complexation by redox chemistry of guests: inclusion of methylviologen in cucurbit[8]uril. Chem. Commun. 1828–1829 (2002)Google Scholar
  17. 17.
    Jeon, W.S., Ziganshina, A.Y., Lee, J.W., Ko, Y.H., Kang, J.-K., Lee, C., Kim, K.: A [2]pseudorotaxane-based molecular machine: reversible formation of a molecular loop driven by electrochemical and photochemical stimuli. Angew. Chem. Int. Ed. 42, 4097–4100 (2003)CrossRefGoogle Scholar
  18. 18.
    Sindelar, V., Cejas, M.A., Raymo, F.M., Kaifer, A.E.: Tight inclusion complexation of 2,7-dimethyldiazapyrenium in cucurbit[7]uril. New J. Chem. 29, 280–282 (2005)CrossRefGoogle Scholar
  19. 19.
    Sindelar, V., Moon, K., Kaifer, A.E.: Binding selectivity of cucurbit[7]uril: bis(pyridinium)-1,4-xylylene versus 4,4'-bipyridinium guest sites. Org. Lett. 6, 2665–2668 (2004)CrossRefGoogle Scholar
  20. 20.
    Ong, W., Kaifer, A.E.: Salt effects on the apparent stability of the cucurbit[7]uril-methyl viologen inclusion complex. J. Org. Chem. 69, 1383–1385 (2004)CrossRefGoogle Scholar
  21. 21.
    Moon, K., Kaifer, A.E.: Modes of binding interaction between viologen guests and the cucurbit[7]uril host. Org. Lett. 6, 185–188 (2004)CrossRefGoogle Scholar
  22. 22.
    Jeon, W.S., Kim, E., Ko, Y.H., Hwang, I.H., Lee, J.W., Kim, S.Y., Kim, H.J., Kim, K.: Molecular loop lock: a redox-driven molecular machine based on a host-stabilized charge-transfer complex. Angew. Chem. Int. Ed. 44, 87–91 (2005)CrossRefGoogle Scholar
  23. 23.
    Zhao, Y., Xue, S., Zhu, Q., Tao, Z., Zhang, J., Wei, Z., Long, L.-S., Hu, M., Xiao, H., Day, A.I.: Synthesis of a symmetrical tetrasubstituted cucurbit[6]uril and its host–guest inclusion complex with 2,2'-bipyridine. Chin. Sci. Bull. 49, 1111–1116 (2004)CrossRefGoogle Scholar
  24. 24.
    Cong, H., Tao, L.-L., Yu, Y.-H., Tao, Z., Yang, F., Zhao, Y.-J., Xue, S.-F., Lawrance, G.A., Wei, G.: Lawrance and G. Wei: Interaction between tetramethylcucurbit[6]uril and some pyridine derivates. J. Phys. Chem. 111, 2715–2721 (2007)Google Scholar
  25. 25.
    Flinn, A., Hough, G.C., Stoddart, J.F., Williams, D.J.: Decamethylcucurbit[5]uril. Angew. Chem., Int. Ed. Engl. 31, 1475–1477 (1992)CrossRefGoogle Scholar
  26. 26.
    Buschmann, H.J., Cleve, E., Schollmeyer, E.: Cucurbituril as a ligand for the complexation of cations in aqueous solutions. Inorg. Chim. Acta 193, 93–97 (1992)CrossRefGoogle Scholar
  27. 27.
    Mock, W.L., Shih, N.Y.: Organic ligand-receptor interactions between cucurbituril and alkylammonium ions. J. Am. Chem. Soc. 110, 4706–4710 (1988)CrossRefGoogle Scholar
  28. 28.
    Mock, W.L., Shih, N.Y.: Structure and selectivity in host–guest complexes of cucurbituril. J. Org. Chem. 51, 4440–4446 (1986)CrossRefGoogle Scholar
  29. 29.
    Mock, W.L., Shih, N.Y.: Host–guest binding capacity of cucurbituril. J. Org. Chem. 48, 3618–3619 (1983)CrossRefGoogle Scholar
  30. 30.
    Mock, W.L., Irra, T.A., Wepsiec, J.P., Manimaran, T.L.: Cycloaddition induced by cucurbituril. A case of Pauling principle catalysis. J. Org. Chem. 48, 3619–3620 (1983)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Xin Xiao
    • 1
  • Zhu Tao
    • 1
  • Sai-Feng Xue
    • 1
  • Qian-Jiang Zhu
    • 1
  • Jian-Xin Zhang
    • 2
  • Geoffrey A. Lawrance
    • 3
  • Burkhard Raguse
    • 4
  • Gang Wei
    • 4
  1. 1.Institute of Applied ChemistryGuizhou UniversityGuizhouP.R. China
  2. 2.Key Laboratory of Chemistry for Natural Products of Guizhou ProvinceGuizhouP.R. China
  3. 3.Discipline of Chemistry, School of Environment and Life ScienceThe University of NewcastleCallaghanAustralia
  4. 4.CSIRO Industrial PhysicsLindfieldAustralia

Personalised recommendations