An inclusion complex of β-cyclodextrin with mnt anion (mnt = maleonitriledithiolate) studied by induced circular dichroism

  • Zhenda Lu
  • Changsheng Lu
  • Qingjin Meng
Original Article


A new inclusion complex of β-cyclodextrin with sodium maleonitriledithiolate (Na2mnt) was investigated by electronic spectra, induced circular dichroism (ICD), and quantum mechanics (QM) methods. The orientation of the guest anion inside the host cavity was studied by ICD spectra and analyzed by structural optimization using PM3 quantum chemical method. Finally, the inclusion constant was determined by both a linear and a non-linear fitting methods, which were based on the variation of ICD signals of the guest upon inclusion complexation with the host. The inclusion constant of Na2mnt/β-cyclodextrin was estimated to be (2.45 ± 0.15) × 103 or (3.10 ± 0.11) × 103 M−1 in solution by these two fitting methods.


β-Cyclodextrin Inclusion complex Maleonitriledithiolate Induced circular dichroism Inclusion constant PM3 



This work was supported by the National Natural Science Foundation (No. 20490218) and the Nanjing University Talent Development Foundation.


  1. 1.
    Bender, M.L., Komiyama, M.: Cyclodextrin Chemistry. Springer, Berlin (1978)Google Scholar
  2. 2.
    (a) Ogino, H.: Relatively high-yield syntheses of rotaxanes. Syntheses and properties of compounds consisting of cyclodextrins threaded by α,ω-diaminoalkanes coordinated to cobalt (III) complexes. J. Am. Chem. Soc. 103, 1303–1304 (1981); (b) Wylie, R.S., Macartney, D.H.: Self-assembling metal rotaxane complexes of α-cyclodextrin. J. Am. Chem. Soc. 114, 3136–3138 (1992); (c) Liu, Y., Zhao, Y.L., Zhang, H.Y., Song, H.B.: Polymeric rotaxane constructed from the inclusion complex of β-cyclodextrin and 4,4′-dipyridine by coordination with nickel(II) ions. Angew. Chem. Int. Ed. 42, 3260–3263 (2003)Google Scholar
  3. 3.
    (a) Saenger, W.: Cyclodextrin inclusion compounds in research and industry. Angew. Chem. Int. Ed. 19, 344–362 (1980); (b) Wenz, G.: Cyclodextrins as building blocks for supramolecular structures and functional units. Angew. Chem. Int. Ed. 33, 803–822 (1994); (c) D’Souza, V.T., Lipkowitz, K.B.: Cyclodextrins. Chem. Rev. 98, 1741–2076 (1998)Google Scholar
  4. 4.
    Krois, D., Brinker, U.H.: Induced circular dichroism and UV–vis absorption spectroscopy of cyclodextrin inclusion complexes: structural elucidation of supramolecular azi-adamantane (spiro[adamantane-2,3′-diazirine]). J. Am. Chem. Soc. 120, 11627–11632 (1998)Google Scholar
  5. 5.
    (a) Schneider, H.-J., Hacket, F., Rüdiger, V., Ikeda, H.: NMR studies of cyclodextrins and cyclodextrin complexes. Chem. Rev. 98, 1755–1785 (1998); (b) Connors, K.A.: The stability of cyclodextrin complexes in solution. Chem. Rev. 97, 1325–1357 (1997)Google Scholar
  6. 6.
    (a) Harata, K., Uedaira, H.: The circular dichroism spectra of the β-cyclodextrin complex with naphthalene derivatives. Bull. Chem. Soc. Jpn. 48, 375–378 (1975); (b) Kodaka, M.: A general rule for circular dichroism induced by a chiral macrocycle. J. Am. Chem. Soc. 115, 3702–3705 (1993)Google Scholar
  7. 7.
    (a) King, R.B., Zipperer, W.C., and Ishaq, M.: Metal complexes of fluorophosphines. I. Reactions of cyclopentadienylmetal carbonyls with dialkylaminodifluorophosphines. Inorg. Chem. 11, 1361–1370 (1972); (b) Lu, C.S., Zhang, W.W., Ren, X.M., Hu, C.J., Zhu, H.Z., Meng, Q.J.: Intramolecular photo-substitution in the inclusion compound of mono[6-deoxy-6-(2-butenedinitrile-2,3-dimercapto sodium salt)]-beta-cyclodextrin with cyclopentadienyl manganese tricarbonyl in DMF solution. J. Chem. Soc., Dalton Trans. 3052–3055 (2001)Google Scholar
  8. 8.
    (a) Briggner, L.-E., Ni, X.-R., Tempesti, F., Wadsö, I.: Microcalorimetric titration of β-cyclodextrin with adamantane-1-carboxylate. Thermochim. Acta 109, 139–143 (1986); (b) Eftink, M.R., Andy, M.L., Bystrom, K., Perlmutter, H.D., Kristol, D.S.: Cyclodextrin inclusion complexes: studies of the variation in the size of alicyclic guests. J. Am. Chem. Soc. 111, 6765–6772 (1989)Google Scholar
  9. 9.
    Godinez, L.A., Schwartz, L., Criss, C.M., Kaifer, A.E.: Thermodynamic studies on the cyclodextrin complexation of aromatic and aliphatic guests in water and water–urea mixtures. Experimental evidence for the interaction of urea with arene surfaces. J. Phys. Chem. B 101, 3376–3380 (1997)Google Scholar
  10. 10.
    (a) Mwakibete, H., Bloor, D.M., Wyn-Jones, E.: Electrochemical studies of cationic drug inclusion complexes with α- and β-cyclodextrins. J. Inclusion Phenom. Macrocycl. Chem. 10, 497–505 (1991); (b) Bertrand, G.L., Faulkner, J.R., Han, S.M. Armstrong, D.W.: Substituent effects on the binding of phenols to cyclodextrins in aqueous solution. J. Phys. Chem. 93, 6863–6867 (1989); (c) Kinoshita, T., Iinuma, F., Tsuji, A.: Microanalysis of proteins and peptides. I. Enhancement of the fluorescence intensity of dansyl amino acids and dansyl proteins in aqueous media and its application to assay of amino acids and proteins. Chem. & Pharm. Bull. 22, 2413–2420 (1974); (d) Hamai, S.: Hydrogen bonding in inclusion complexes of heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin with chlorophenols in organic solvents. Bull. Chem. Soc. Jpn. 65, 2323–2327 (1992); (e) Lewis, E.A., Hansen, L.D.: Thermodynamics of binding of guest molecules to α- and β-cyclodextrins. J. Chem. Soc., Perkin Trans. 2, 2081–2085 (1973); (f) Siimer, E., Kobu, M., Kurvits, M.: Thermochemical study of cyclodextrin inclusion complexes. Thermochim. Acta 170, 89–95 (1990); (g) Siimer, E., Kurvits, M., Kostner, A.: Thermochemical investigation of β-cyclodextrin complexes with benzoic acid and sodium benzoate. Thermochim. Acta 116, 249–256 (1987)Google Scholar
  11. 11.
    Cramer, F., Saenger, W., Spatz, H.C.: Inclusion compounds. XIX.1a The formation of inclusion compounds of α-cyclodextrin in aqueous solutions. Thermodynamics and kinetics. J. Am. Chem. Soc. 89, 14–20 (1967)CrossRefGoogle Scholar
  12. 12.
    Liu, L., Song, K.S., Li, X.S., Guo, Q.X.: Charge-transfer interaction: a driving force for cyclodextrin inclusion complexation. J. Inclusion Phenom. Macrocycl. Chem. 40, 35–39 (2001)CrossRefGoogle Scholar
  13. 13.
    Gaussian 03 (Revision B.03); Frisch, M.J.G., Trucks, W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A. Jr., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C, Pople, J.A.: Gaussian Inc., Pittsburgh, PA, USA (2003)Google Scholar
  14. 14.
    (a) Liu, L., Guo, Q.X.: Use of quantum chemical methods to study cyclodextrin chemistry. J. Inclusion Phenom. Macrocycl. Chem. 50, 95–103 (2004); (b) Muller, A., Wenz, G.: Thickness recognition of bolaamphiphiles by α-cyclodextrin. Chem. Eur. J. 13, 2218–2223 (2007)Google Scholar
  15. 15.
    (a) Zhang, X., Nau, W.M.: Chromophore alignment in a chiral host provides a sensitive test for the orientation—intensity rule of induced circular dichroism. Angew. Chem. Int. Ed. Engl. 39, 544–547 (2000); (b) Bobek, M.M., Krois, D., Brinker, U.H.: Induced circular dichroism of cyclodextrin inclusion complexes: examining the cavity with a bilateral probe. Org. Lett. 2, 1999–2002 (2000); (c) Mieusset, J.L., Krois, D., Pacar, M., Brecker, L., Giester, G., Brinker, U.H.: Supramolecular recognition and structural elucidation of inclusion complexes of an achiral carbene precursor in beta and permethylated β-cyclodextrin. Org. Lett. 6, 1967–1970 (2004); (d) Mayer, B., Zhang, X.Y., Nau, W.M., Marconi, G.: Co-conformational variability of cyclodextrin complexes studied by induced circular dichroism of azoalkanes. J. Am. Chem. Soc. 123, 5240–5248 (2001); (e) Bakirci, H., Zhang, X.Y., Nau, W.M.: Induced circular dichroism and structural assignment of the cyclodextrin inclusion complexes of bicyclic azoalkanes. J. Org. Chem. 70, 39–46 (2005)Google Scholar
  16. 16.
    Bähr, G., Schleitzer, G.: Carbon disulfide and carbon diselenide. II. The condensing and spontaneous desulfidizing of salts and esters of cyanodithioformic acid. Free cyanodithioformic acid. Chem. Ber. 90, 438–443 (1957)CrossRefGoogle Scholar
  17. 17.
    Lu, Z.D., Lu, C.S., Meng, Q.J.: unpublished resultsGoogle Scholar
  18. 18.
    Nowakowska, M., Smoluch, M., Sendor, D.: The effect of cyclodextrins on the photochemical stability of 7-amino-4-methylcoumarin in aqueous solution. J. Inclusion Phenom. Macrocycl. Chem. 40, 213–219 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.State Key Laboratory of Coordination Chemistry, Coordination Chemistry InstituteNanjing UniversityNanjingP.R. China

Personalised recommendations