Inclusion complex formation of α- and β-cyclodextrins with aminobenzoic acids in aqueous solution studied by 1H NMR

  • Irina V. Terekhova
  • Roman S. Kumeev
  • Gennadiy A. Alper
Original Article


Complex formation of α- and β-cyclodextrins with para- and meta-aminobenzoic acids in water at 298.15 K was studied by 1H NMR. The formation of 1:1 inclusion complexes in all systems under consideration was observed. Stability constants of the complexes and chemical shift difference induced by 100% complex formation were calculated. The obtained results were discussed in terms of influence of the cyclodextrin cavity size and position of the side amino group in the aromatic ring of aminobenzoic acid molecule on the binding mode and the complex stability.


Aminobenzoic acid Binding mode Cyclodextrin Inclusion complexes NMR Stability constant 



This work was supported by the Russian Science Support Foundation. We would like also to thank N.A. Obukhova for her assistance in the experimental part of work.


  1. 1.
    Szejtli, J.: Cyclodextrin Technology, Kluwer Academic Publishers, Netherlands (1988).Google Scholar
  2. 2.
    Szejtli, J.: Industrial applications of cyclodextrins. In: Atwood, J.L., Davies, J.E.D., MacNicol, D.D. (eds.) Inclusion Compounds, vol. 3. Academic Press, London (1984).Google Scholar
  3. 3.
    Hedges A.R.: Industrial applications of cyclodextrins. Chem. Rev. 98, 2035–2044 (1998).CrossRefGoogle Scholar
  4. 4.
    Uekama, K., Hirayama, F., Irie, T.: Cyclodextrin drug carrier systems. Chem. Rev. 98, 2045–2076 (1998).CrossRefGoogle Scholar
  5. 5.
    Terekhova, I.V., Kulikov, O.V.: Cyclodextrins. Physical–chemical aspects of formation of complexes “host–guest” and molecular selectivity in relation to biologically active molecules.In: Zaikov, G.E. (ed.) Chemistry of Polysaccharides. Brill Academic Publishers, Netherlands (2005).Google Scholar
  6. 6.
    Terekhova, I.V., Scriba, G.K.E.: Study on complex formation of biologically active pyridine derivatives with cyclodextrins by capillary electrophoresis. J. Pharm. Biomed. Anal. (2007) doi:  10.1016/j.jpba.2007.02.003.
  7. 7.
    Vasilieva, S.: Para-aminobenzoic acid inhibits a set of SOS functions in Escherichia coliK12. Mutat. Res. 496, 89–95 (2001).Google Scholar
  8. 8.
    Hirt, R., Hurni, H.: Helv. Chim. Acta 32, 378 (1949).CrossRefGoogle Scholar
  9. 9.
    Bruze, M., Gruvberger, B., Thulin I.: PABA, benzocaine, and other PABA esters in sunscreens and after-sun products. Photodermatol. Photoimmunol. Photomed. 7, 106–108 (1990).Google Scholar
  10. 10.
    Mackie, B.S., Mackie, L.E.: The PABA story. Aust. J. Dermatol. 40, 51–53 (1999).CrossRefGoogle Scholar
  11. 11.
    Salvador, A., Chisvert, A., Rodríguez, A., March, J.G.: Indirect spectrophotometric determination of p-aminobenzoic acid in sunscreen formulations by sequential injection analysis. Anal. Chem. Acta 493, 233–239 (2003).CrossRefGoogle Scholar
  12. 12.
    Dromgoole, S.H., Mailbach, H.I.: Sunscreening agent intolerance: contact and photocontact sensitization and contact urticaria. J. Am. Acad. Dermatol. 22, 1068–1078 (1990).CrossRefGoogle Scholar
  13. 13.
    Shaw, A.A., Wainschel, L.A., Shetlar, M.D.: Photoaddition of p-aminobenzoic acid to thymine and thymidine. Photochem. Photobiol. 55, 657–663 (1992).CrossRefGoogle Scholar
  14. 14.
    Setnička, V., Urbanová, M., Král, V., Volka, K.: Interactions of cyclodextrins with aromatic compounds studied by vibrational circular dichroism spectroscopy. Spectrochim. Acta A 58, 2983–2989 (2002).CrossRefGoogle Scholar
  15. 15.
    Harata, K.: Induced circular dichroism of cycloamylose complexes with meta-and para-disubstituted benzenes. Bioorg. Chem. 10, 255–265 (1981).CrossRefGoogle Scholar
  16. 16.
    Lewis, E.A., Hansen, L.D.: Thermodynamics of binding of guest molecules to α- and β-cyclodextrins. J. Chem. Soc. Perkin Trans. 2, 2081–2085 (1973).Google Scholar
  17. 17.
    Shaomin, S., Yu, Y., Jinghao, P.: Study on molecular recognition of para-aminobenzoic acid species by α-, β- and hydroxypropyl-β-cyclodextrin. Anal. Chim. Acta 458, 305–310 (2002).CrossRefGoogle Scholar
  18. 18.
    Stalin, T., Rajendiran, N.: Intramolecular charge transfer effects on 3-aminobenzoic acid. Chem. Phys. 322, 311–322 (2006).CrossRefGoogle Scholar
  19. 19.
    Stalin, T., Shanthi, B., Vasantha Rani, P., Rajendiran, N.: Solvatochroism, prototropism and complexation of p-aminobenzoic acid. J. Inclus. Phenom. Macrocycl. Chem. 55, 21–29 (2006).CrossRefGoogle Scholar
  20. 20.
    Stalin, T., Rajendiran, N.: Intramolecular charge transfer associated with hydrogen bonding effects on 2-aminobenzoic acid. J. Photochem. Photobiol. A 182, 137–150 (2006).CrossRefGoogle Scholar
  21. 21.
    Job, P.: Ann. Chim. 9, 113–203 (1928).Google Scholar
  22. 22.
    Schneider, H.-J., Hacket, F., Rűdiger, V.: NMR studies of cyclodextrins and cyclodextrin complexes. Chem. Rev. 98, 1755–1785 (1998).CrossRefGoogle Scholar
  23. 23.
    Simova, S., Schneider, H.-J.: NMR analyses of cyclodextrin complexes with substituted benzoic acids and benzoate anions. J. Chem. Soc. Perkin Trans. 2, 1717–1722 (2000).Google Scholar
  24. 24.
    Rűdiger, V., Eliseev, A., Simova, S., Schneider, H.-J., Blandamer, M.J., Cullis, P.M., Meyer, A.J.: Conformational, calorimetric and NMR spectroscopic studies on inclusion complexes of cyclodextrins with substituted phenyl and adamantine derivatives. J. Chem. Soc. Perkin Trans. 2, 2119– 2123 (1996).Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Irina V. Terekhova
    • 1
  • Roman S. Kumeev
    • 1
  • Gennadiy A. Alper
    • 1
  1. 1.Institute of Solution Chemistry of Russian Academy of SciencesIvanovoRussia

Personalised recommendations