Liquid–liquid extraction and transport through membrane of amino acid methylesters by calix[n]arene derivatives

  • Lucia Mutihac
  • Radu Mutihac
Original Article


The extractability together with the transport through liquid membrane of some amino acid methylesters by using p-tert-butylcalix[4]arene as extractant or carrier was studied. In this context, p-tert-butylcalix[n]arenes (n = 6, 8) were found to act as useful carriers or extractant reagents for l-tryptophan methylester and l-tyrosine methylester. The calix[n]arene derivatives used in experiments extracted amino acids methylesters from the aqueous phase into chloroformic phase in the presence of tropaeolin 00 ([4(4′-anilinophenylazo)benzenesulphonic acid]) as counterion at \( {\text{pH}} \cong 5.0 \). The extraction and the transport depend on the structure of calixarenes, the structure of amino acids, the pH, and the nature of anion used as ion pair for cation-receptor complexes. The properties of solvent involved in liquid membrane play an important role in membrane stability and also in selecting membrane systems. The results demonstrated that the inclusion properties of the investigated hosts are correlated with their structural properties and also they suggest further possibilities for optimal separation of amino acids derivatives.


Amino acid methylesters Derivative calixarenes Liquid–liquid extraction Transport Liquid membrane 


  1. 1.
    Asfari, Z., Böhmer, V., Harrowfield, J., Vicens, J. (eds.): Calixarenes 2001. Kluwer Academic Publishers, Dordrecht (1991)Google Scholar
  2. 2.
    Gutsche, C.D.: Calixarenes Revisited. The Royal Society of Chemistry, Cambridge, UK (1998)Google Scholar
  3. 3.
    Vicens, J., Harrowfield, J. (eds.): Calixarene in the Nanoworld. Springer, Dordrecht (2006)Google Scholar
  4. 4.
    Abraham, W.: Inclusion of Organic Cations by Calix[n]arenes. J. Incl. Phenom. Macrocyclic Chem. 43, 159–174 (2002)CrossRefGoogle Scholar
  5. 5.
    Böhmer, V.: Calixarenes, macrocycles with (almost) unlimited possibilities. Angew. Chem. Int. Ed. Engl. 34, 713–745 (1995)CrossRefGoogle Scholar
  6. 6.
    Ikeda, A., Shinkai, S.: Novel cavity design using calix[n]arene skeletons: Toward molecular recognition and metal binding. Chem. Rev. 97, 1713–1734 (1997)CrossRefGoogle Scholar
  7. 7.
    Mutihac, L., Buschmann, H.-J., Mutihac, R.-C., Schollmeyer E.: Complexation and separation of amines, amino acids, and peptides by functionalized calix[n]arenes. J. Incl. Phenom. Macrocyclic Chem. 51, 1–10 (2005)CrossRefGoogle Scholar
  8. 8.
    Mandolini, L., Ungaro, R. (eds.): Calixarenes in Action. Imperial College, London (2000)Google Scholar
  9. 9.
    Danil de Namor, A.F., Cleverley, R.M., Zapata-Ormachea, M.L.: Thermodynamics of calixarene chemistry. Chem. Rev. 98, 2495–2525 (1998)CrossRefGoogle Scholar
  10. 10.
    Ludwig, R.: Calixarenes in ananlytical and separation chemistry. Fresen. J. Anal. Chem. 367, 103–128 (2000)CrossRefGoogle Scholar
  11. 11.
    Lumetta, G.L., Rogers, R.D., Gopalan, A.S. (eds.): Calixarenes for Separations (ACS Symposium Series 757). American Chemical Society, Washington (2000)Google Scholar
  12. 12.
    Casnati, A., Sansone, F., Ungaro, R.: Peptido- and Glycocalixarenes: Playing with hydrogen bonds around hydrophobic cavities. Acc. Chem. Res. 36, 246–254 (2003)CrossRefGoogle Scholar
  13. 13.
    Vincenti, M., Irico A., Dalcanale, E.: Host-guest interactions in mass spectrometry. Adv. Mass Spectrom. 14, 129–150 (1998)Google Scholar
  14. 14.
    Stone, M.M., Franz, A.H., Lebrilla, C.B.: Non-covalent calixarene-amino acid complexes formed by MALDI-MS. J. Am. Soc. Mass Spectrom. 13, 964–974 (2003)CrossRefGoogle Scholar
  15. 15.
    Schalley, C.A., Castellano, R.K., Brody, M.S., Rudkevich, D.M., Siuzdak, G., Jr Rebek J.: Investigating molecular recognition by mass spectrometry: characterization of calixarene-based self-assembly capsule hosts with charged guests. J. Am. Chem. Soc. 121(19), 4568–4569 (1999)CrossRefGoogle Scholar
  16. 16.
    Cherif, J.K., Mahouachi, M., Abidi, R., Vicens, J.: Synthesis and complexation studies of a tetra(N,N-dimethyl)aminoethylamide p-tert-butyl calix[4]arene and its tetramethylammonium derivative. J. Incl. Phenom. Macrocyclic Chem. 55, 51–57 (2006)CrossRefGoogle Scholar
  17. 17.
    Vicens, J.: Applied and fundamental research: their mutual stimulation in the real world of chemistry – developing calixbiscrowns for nuclear waste treatment. J. Incl. Phenom. Macrocyclic Chem. 55, 193–196 (2006)CrossRefGoogle Scholar
  18. 18.
    Moyer, B.A., Birdwell, J.F. Jr., Bonnesen, P.V., Delmau, L.H.: Use of macrocycles in nuclear-waste cleanup: a real world application of a calixcrown in cesium separation technology. In: Gloe, K. (ed.) Macrocyclic Chemistry—Current Trends and Future Perspectives, pp. 383–405. Springer, Dordrecht (2005)Google Scholar
  19. 19.
    Baklouti, L., Cheriaa, N., Mahouachi, M., Abidi, R., Kim, J.S., Kim, Y., Vicens, J.: Calixarene-based dendrimers. A timely review. J. Incl. Phenom. Macrocyclic Chem. 54, 1–7 (2006)CrossRefGoogle Scholar
  20. 20.
    Chang, S.-K., Hwang, H.-S., Son, H., Youk, J., Kang, Y.S.: Selective transport of amino acid esters through in chloroform liquid membrane by a calix[6]arene-based ester carrier. J. Chem. Soc., Chem. Commun. 217–218 (1991)Google Scholar
  21. 21.
    Zolotov, Y.A., Pletnev, I.V., Torocheshnikova, I.I., Shvedene, N.V., Nemilova, M.Y., Kovalev, V.V., Shokova, E.A., Smirnova, S.V.: Extraction and determination of amino compounds with calix[8]arenes. Solv. Extr. Res. Dev. Jpn. 1, 123–131 (1994)Google Scholar
  22. 22.
    Okada, Y., Kasai, Y., Nishimura, J.: The selective extraction and transport of amino acids by calix[4]arene-derived esters. Tetrahedron Lett. 36, 555–558 (1995)CrossRefGoogle Scholar
  23. 23.
    Hu, H., He, J., Chan, A.S.C., Han, X., Cheng, J.-P.: New chiral macrocyclic ligands. Design and synthesis of (R)-cysteine-containing calix[4]arenes. Tetrahedron: Asymmetry 10, 2685–2689 (1999)CrossRefGoogle Scholar
  24. 24.
    Araki, K., Inada, K., Shinkai, S.: Chiral recognition of α-amino acid derivatives with a homooxacalix3arene: Construction of a pseudo-C2-symmetrical compound from a C3 symmetrical macrocycle. Angew. Chem. Int. Ed. Engl. 35, 72–74 (1996)CrossRefGoogle Scholar
  25. 25.
    Antipin, I.S., Stoikov, I.I., Pinkhassik, E.M., Fitseva, N., Stibor, I., Konovalov, A.I.: Calix[4]arene based α-aminophosphonates: Novel carriers for zwitterionic amino acids transport. Tetrahedron Lett. 38, 5865–5868 (1997)CrossRefGoogle Scholar
  26. 26.
    Oshima, T., Goto, M., Furusaki, S.: Extraction behavior of amino acids by calix[6]arene carboxylic acid derivatives. J. Incl. Phenom. Macrocyclic Chem. 43, 77–86 (2002)CrossRefGoogle Scholar
  27. 27.
    Oshima, T., Inoue, K., Furusaki, S., Goto, M.: Liquid membrane transport of amino acids by a calix[6]arene carboxylic acid derivative. J. Membr. Sci. 217, 87–97 (2003)CrossRefGoogle Scholar
  28. 28.
    Oshima T., Oishi K., Ohto K., Inoue, K.: Extraction of catecholamine by calixarene carboxylic acid derivatives. J. Incl. Phenom. Macrocyclic Chem. 55, 79–85 (2006)CrossRefGoogle Scholar
  29. 29.
    Mutihac, L., Buschmann, H.-J., Diacu, E.: Calixarene derivatives as carriers in liquid membrane separation. Desalination 148, 253–256 (2002)CrossRefGoogle Scholar
  30. 30.
    Mutihac, L., Buschmann, H.-J., Tudorescu, A., Mutihac, R.: Some aspects of extractibility and transport of amino acids esters by calixarenes. J. Incl. Phenom. Macrocyclic Chem. 47, 123–128 (2003)CrossRefGoogle Scholar
  31. 31.
    Mutihac, L., Buschmann H.-J., Mutihac, R.: Relationship between extraction properties and transport through liquid membrane of amino acids by calixarene derivatives. Indian J. Chem. 42A, 2978–2981 (2003)Google Scholar
  32. 32.
    Marcus, Y.: Ion Solvation, p. 46. J. Wiley & Sons Inc., Chichester (1985)Google Scholar
  33. 33.
    Pedersen, C.J.: Ionic complexes of macrocyclic polyethers. J. Fed. Proc. Fed. Am. Soc. Exp. Biol. 27, 1305–1309 (1968)Google Scholar
  34. 34.
    Mutihac, L., Buschmann, H.-J., Jansen, K., Wego, A.: Interaction and transport through liquid membranes of some dipeptide complexes with macrocyclic receptors. Mat Sci & Eng C. 18, 259–264 (2001)CrossRefGoogle Scholar
  35. 35.
    Tayar, N.El., Tsai, R.S., Carrupt, P.A., Testa, B.: Octan-1-ol-water partition coefficients of zwitterionic α-amino acids. Determination by centrifugal partition chromatography and factorization into steric/hydrophobic and polar components. J. Chem. Soc., Perkin Trans. 2, 79–84 (1992)Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  1. 1.Department of Analytical ChemistryUniversity of BucharestBucharestRomania
  2. 2.Department of Electricity and BiophysicsUniversity of BucharestBucharest-MagureleRomania

Personalised recommendations