Crystal and molecular structure of β-cyclodextrin inclusion complex with succinic acid

  • Yuriy V. Lisnyak
  • Arthur V. Martynov
  • Vyacheslav N. Baumer
  • Oleg V. Shishkin
  • Anna V. Gubskaya
Original Article


The crystal complex of β-cyclodextrin with succinic acid, intermediate product of hydrolysis reaction of succinic anhydride in the presence of β-cyclodextrin, was isolated and studied by X-ray analysis (monoclinic, space group P21, a = 15.1977(7) Å, b = 10.1763(5) Å, c = 20.6943(6) Å, β = 109.239(4)°, V = 3021.8(2) Å3, Z = 2, R 1 = 0.0359, wR 2 = 0.0947). It was proved that β-cyclodextrin and succinic acid form an inclusion complex, which exists in crystal state as a heptahydrate. The molecule of succinic acid is fully included in the β-cyclodextrin cavity with its carboxyl groups accessible for water molecules. Water molecules located at borders of cavity rims and in interstices between molecules of β-cyclodextrin participate in formation of intermolecular hydrogen bonds. The overall structure does not contain disordered fragments. The crystal conformation of succinic acid corresponds to one of possible conformers of the molecule in vacuo and is almost not disturbed by intermolecular interactions in crystal. Based on the analysis of structural features of the crystal conformation of succinic acid and character of its location in the β-cyclodextrin cavity, it was suggested that hydrolysis of succinic anhydride via ring opening and formation of succinic acid is mediated by cyclodextrin microenvironment and it likely occurs near the narrow rim of the macrocycle cavity.


β-Cyclodextrin inclusion complex Conformational analysis Crystal structure Hydrogen bonding Mediator of reaction Succinic acid Succinic anhydride X-ray analysis 



This work was supported by National Academy of Sciences of Ukraine. VB acknowledges the ICDD for financial support (Grant (03-02).

Supplementary material

10847_2006_9284_MOESM1_ESM.pdf (12 kb)
CCDC 617335 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via, or by emailing, or by contacting The Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ,UK; fax: +44 1223 336033 (PDF 13 kb)


  1. 1.
    Szejtli, J.: Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98, 1743–1753 (1998)CrossRefGoogle Scholar
  2. 2.
    Hedges, A.R.: Industrial applications of cyclodextrins. Chem. Rev. 98, 2035–2044 (1998)CrossRefGoogle Scholar
  3. 3.
    Szejtli, J.: Medicinal applications of cyclodextrins. Med. Res. Rev. 14, 353–386 (1994)CrossRefGoogle Scholar
  4. 4.
    Uekama, K., Hirayama, F., Irie, T.: Cyclodextrin drug carrier systems. Chem. Rev. 98, 2045–2076 (1998)CrossRefGoogle Scholar
  5. 5.
    Breslow, R., Dong, S.D.: Biomimetic reactions catalyzed by cyclodextrins and their derivatives. Chem. Rev. 98, 1997–2011 (1998)CrossRefGoogle Scholar
  6. 6.
    Takahashi, K.: Organic reactions mediated by cyclodextrins. Chem. Rev. 98, 2013–2033 (1998)CrossRefGoogle Scholar
  7. 7.
    Dong, T., He, Y., Zhu, B., Shin, K.-M., Inoue, Y.: Nucleation mechanism of α-cyclodextrin-enhanced crystallization of some semicrystalline aliphatic polymers. Macromolecules 38, 7736–7744 (2005)CrossRefGoogle Scholar
  8. 8.
    Dong, T., Shin, K.-M., Zhu, B., Inoue, Y.: Nucleation and crystallization behavior of poly(butylenes succinate) induced by its α-cyclodextrin inclusion complex: effect of stoichiometry. Macromolecules 39, 2427–2428 (2006)CrossRefGoogle Scholar
  9. 9.
    Berkhout, B., Derksen, G.C., Back, N.K., Klaver, B., de Kruif, C.G., Visser, S.: Structural and functional analysis of negatively charged milk proteins with anti-HIV activity. AIDS Res. Hum. Retroviruses 13, 1101–1107 (1997)CrossRefGoogle Scholar
  10. 10.
    Swart, P.J., Beljaars, E., Smit, C., Pasma, A., Schuitemaker, H., Meijer, D.K.: Comparative pharmacokinetic, immunologic and hematologic studies on the anti-HIV-1/2 compounds aconitylated and succinylated HAS. J. Drug Target. 4, 109–116 (1996)Google Scholar
  11. 11.
    Martynov, A.V., Smelyanskaya, M.V.: Antiproliferative properties of chemically modified α-2b-recombinant interferon. J. Interf. Cytokine res. 25, 414–417 (2005)CrossRefGoogle Scholar
  12. 12.
    Neiland, O.: Organic chemistry, p. 571. Moscow, High School (1990)Google Scholar
  13. 13.
    Dawson, R.M.C., Elliot, D.C., Elliot, W.H., Jones, K.M.: Data for Biochemical Research, p. 333. Clarenton Press, Oxford (1986)Google Scholar
  14. 14.
    Altomare, A., Burla, M.C., Camalli, M., Cascarano, G.L., Giacovazzo, C., Guagliardi, A., Moliterni, A.G.G., Polidori, G., Spagna, R.: SIR97: a new tool for crystal structure determination and refinement. J. Appl. Cryst. 32, 115–119 (1999)CrossRefGoogle Scholar
  15. 15.
    Sheldrick, G.M.: SHELXL-97, Release 97–2, University of Göttingen, Germany (1997)Google Scholar
  16. 16.
    HyperChem® Release 7.0 for Windows, Molecular Modeling System, Hypercube, Inc. (2002)Google Scholar
  17. 17.
    Dewar, M.J.S., Zoebisch, E.G., Healy, E.F., Stewart, J.J.P.: AM1: a new general purpose quantum mechanical molecular model. J. Am. Chem. Soc. 107, 3902–3909 (1985)CrossRefGoogle Scholar
  18. 18.
    Leach, A.R.: Molecular Modelling/Principles and Applications, p. 422. Addison Wesley Longman Ltd, Essex (1996)Google Scholar
  19. 19.
    Chang, G., Guida, W.C., Still, W.C.: An internal-coordinate Monte Carlo method for searching conformational space. J. Am. Chem. Soc. 111, 4379–4387 (1989)CrossRefGoogle Scholar
  20. 20.
    Lee, B., Richards, F.M.: Interpretation of protein structures: estimation of static accessibility. J. Mol. Biol. 55, 379–400 (1971)CrossRefGoogle Scholar
  21. 21.
    Chem 3D® Ultra Version 8.0, Molecular Modeling and Analysis, Cambridge Soft Corporation (2003)Google Scholar
  22. 22.
    Hallén, D., Schön, A., Shehatta, I., Wadsö, I.: Microcalorimetric titration of α-cyclodextrin with some straight-chain alkan-1-ols at 288.15, 298.15 and 308.15 K. J. Chem. Soc., Faraday Trans. 88, 2859–2863 (1992)CrossRefGoogle Scholar
  23. 23.
    Rekharsky, M.V., Inoue, Y.: Complexation thermodynamics of cyclodextrins. Chem. Rev. 98, 1875–1917 (1998)CrossRefGoogle Scholar
  24. 24.
    Aversa, A., Etter, W., Gelb, R.I., Schwartz, L.M.: Complexation of aliphatic dicarboxylic acids and anions by alpha-cyclodextrin. J. Incl. Phenom. Macroc. Chem. 9, 277–285 (1990)CrossRefGoogle Scholar
  25. 25.
    Harata, K., Uekama, K., Otagiri, M., Hirayama, F.: Crystal structure of the α-CD-3-iodopropionic acid (1:1) complex pentahydrate. Nihon Kagaku Kaishi. 173–180 (1983)Google Scholar
  26. 26.
    Saenger, W., Jacob, J., Gessler, K., Steiner, T., Hoffmann, D., Sanbe, S., Koizumi, K., Smith, S.M., Takaha, T.: Structures of the common cyclodextrins and their larger analogues-beyond the doughnut. Chem. Rev. 98, 1787–1802 (1998)CrossRefGoogle Scholar
  27. 27.
    Harata, K.: Structural aspects of stereodifferentiation in the solid state. Chem. Rev. 98, 1803–1827 (1998)CrossRefGoogle Scholar
  28. 28.
    Betzel, C., Saenger, W., Hingerty, B.E., Brown, G.M.: Circular and flip-flop hydrogen bonding in β-cyclodextrin undecahydrate: a neutron diffraction study. J. Am. Chem. Soc. 106, 7545–7557 (1984)CrossRefGoogle Scholar
  29. 29.
    Jefffrey, G.A.: An Inroduction to Hydrogen Bonding, p. 12. Oxford University Press, New York (1997)Google Scholar
  30. 30.
    Allinger, N.L., Chang, S.H.M.: Conformational analysis-CXXIII. Carboxylic acids and esters in force field calculations. Tetrahedron 33, 1561–1567 (1977)CrossRefGoogle Scholar
  31. 31.
    Alvira, E., Mayoral, J.A., Garsia, J.I.: Molecular modeling study of β-cyclodextrin inclusion complexes. Chem. Phys. Lett. 271, 178–184 (1997)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • Yuriy V. Lisnyak
    • 1
  • Arthur V. Martynov
    • 1
  • Vyacheslav N. Baumer
    • 2
  • Oleg V. Shishkin
    • 2
  • Anna V. Gubskaya
    • 3
  1. 1.Department of Molecular ModelingI.Mechnikov Institute of Microbiology and Immunology AMS of UkraineKharkovUkraine
  2. 2.STC “Institute for Single Crystals” NAS of UkraineKharkovUkraine
  3. 3.New Jersey Center for Biomaterials, RutgersThe State University of New JerseyPiscatawayUSA

Personalised recommendations