Development of a competitive continuous variation plot for the determination of inclusion compounds stoichiometry

  • David Landy
  • François Tetart
  • Eddy Truant
  • Philippe Blach
  • Sophie Fourmentin
  • Gheorghe Surpateanu
Original Article


The spectral displacement method in presence of methyl orange has been coupled to the continuous variation plot to allow the determination of the stoichiometries for inclusion compounds. Such a “competitive continuous variation plot” (CCV plot) is especially useful for the study of substrates which are not directly observable by spectroscopy or which are too poorly soluble to give observable signals. Moreover, when a mixture of complexes is observed, the position of the maximum in the competitive continuous variation plot gives information on the relative affinities of the complexes, which is not the case in the classical Job plot which also depends of the intrinsic spectral characteristics of each complex. The method is not restricted to β-cyclodextrin inclusion compounds, and it may be applied to any complexes if an appropriate competitive system is available.


β-Cyclodextrin Continuous variation plot Inclusion compounds Methyl orange Spectral displacement method 



Competitive Continuous Variation






Methyl orange




Sulfobutylated β-cyclodextrin, mean degree equal to 1


Sulfobutylated β-cyclodextrin, mean degree equal to 7


  1. 1.
    Job, P.: Formation and stability of inorganic complexes in solution. Ann. Chim. 9, 113–203 (1928)Google Scholar
  2. 2.
    Canipelle, M., Caron, L., Christine, C., Tilloy, S., Monflier, E.: Thermodynamic insight into the origin of the inclusion of monosulfonated isomers of triphenylphosphine into the β-cyclodextrin cavity. Carbohydr. Res. 337(3), 281–287 (2002)CrossRefGoogle Scholar
  3. 3.
    Gibaud, S., Ben Zirar, S., Mutzenhardt, P., Fries, I., Astier, A.: Melarsoprol-cyclodextrins inclusion complexes. Int. J. Pharm. 306(1–2), 107–121 (2005)CrossRefGoogle Scholar
  4. 4.
    Ribeiro, L., Carvalho, R.A., Ferreira, C.C., Veiga, F.J.B.: Multicomponent complex formation between vinpocetine, cyclodextrins, tartaric acid and water-soluble polymers monitored by NMR and solubility studies. Eur. J. Pharm. Sci. 24(1), 1–13 (2005)CrossRefGoogle Scholar
  5. 5.
    Stella, V., Rajewski, R.: Derivatives of cyclodextrins exhibiting enhanced aqueous solubility and the use thereof. US Patent 5, 134, 127 (1992)Google Scholar
  6. 6.
    Landy, D., Fourmentin, S., Salome, M., Surpateanu, G.: Analytical improvement in measuring formation constants of inclusion complexes between β-cyclodextrin and phenolic compounds. J. Incl. Phenom. Macrocyclic Chem. 38, 187 (2000)CrossRefGoogle Scholar
  7. 7.
    Landy, D., Fourmentin-Lamotte, S., Elhoujajji, F., Surpateanu, G.: 1H NMR, circular dichroism and UV-visible spectroscopic study of inclusion complexes formation between o-, m-, p-hydroxyphenol and -cyclodextrin. In: Torres Labandeira, J.J., Vila-Jato, J.L. (eds.) Proceeding of the 9th International Symposium on Cyclodextrins, pp. 663–666. Kluwer Academic Publishers (1998)Google Scholar
  8. 8.
    Selvidge, L.A., Eftink, M.R.: Spectral displacement techniques for studying the binding of spectroscopically transparent ligands to cyclodextrins. Anal. Biochem. 154(2), 400–408 (1986)CrossRefGoogle Scholar
  9. 9.
    Rekharsky, M.V., Inoue, Y.: Complexation thermodynamics of cyclodextrins. Chem. Rev. 98, 1875–1918 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • David Landy
    • 1
  • François Tetart
    • 1
  • Eddy Truant
    • 1
  • Philippe Blach
    • 1
  • Sophie Fourmentin
    • 1
  • Gheorghe Surpateanu
    • 1
  1. 1.Laboratoire de Synthèse Organique et Environnement, EA 2599Université du Littoral Côte d’OpaleDunkerqueFrance

Personalised recommendations