Advertisement

Homodromic hydrogen bonds in low-energy conformations of single molecule cyclodextrins

  • Alfred Karpfen
  • Elisabeth Liedl
  • Walter Snor
  • Petra Weiss-Greiler
  • Helmut Viernstein
  • Peter Wolschann
Original Article

Abstract

Low-energy conformations of β-cyclodextrin under anhydrous conditions in the gas phase were investigated by DFT calculations. In these conformations, two homodromic hydrogen bond rings are formed with very short hydrogen bonds at the narrow side of the cyclodextrin ring and a second one at the wider side. These hypothetical conformations are not comparable to those conformations, which have been studied experimentally, forming inclusion complexes with small and medium-sized guest molecules, but their energy is significantly lower than the open conformations (ΔE = 10 kcal/mol).

Keywords

Cyclodextrin ab initio Density functional calculations Homodromic hydrogen bonds 

Notes

Acknowledgements

This investigation was supported by the Hochschuljubiläumsstiftung der Stadt Wien (Project P H-778/2005). Technical assistance of Ms. Martina Ziehengraser is gratefully acknowledged.

References

  1. 1.
    Chacko, K.K., Saenger, W.: Topography of cyclodextrin inclusion complexes. 15. crystal and molecular structure of the cyclohexaamylose-7.57 water complex, form III. four- and six-membered circular hydrogen bonds. J. Am. Chem. Soc. 103, 1708–1715 (1981).CrossRefGoogle Scholar
  2. 2.
    Betzel, C., Saenger, W., Hingerty, B.E., Brown, G.M.: Circular and flip-flop hydrogen bonding in β-cyclodextrin undecahydrate: a neutron diffraction study? J. Am. Chem. Soc. 106, 7545–7557 (1984).CrossRefGoogle Scholar
  3. 3.
    Zabel, V., Saenger, W., Mason, S.A.: Neutron diffraction study of the hydrogen bonding in β-cyclodextrin undecahydrate at 120 K: from dynamic flip-flops to static homodromic chains. J. Am. Chem. Soc. 108, 3664–3673 (1986).CrossRefGoogle Scholar
  4. 4.
    Steiner, T., Mason, S.A., Saenger, W.: Disordered guest and water molecules. Three-center and flip-flop 0–H…0 hydrogen bonds in crystalline, βb-cyclodextrin ethanol octahydrate at T = 295 K: a neutron and X-ray diffraction study? J. Am. Chem. Soc. 113, 5676–5687 (1991).CrossRefGoogle Scholar
  5. 5.
    Steiner, T., Koellner, G.: Crystalline β-cyclodextrin hydrate at various humidities: fast, continuous, and reversible dehydration studied by X-ray diffraction. J. Am. Chem. Soc. 116, 5122–5128 (1994).CrossRefGoogle Scholar
  6. 6.
    Saenger, W., Jacob, J., Gessler, K., Steiner, T., Hoffmann, D., Sanbe, H., Koizumi, K., Smith, S.M., Takaha, T.: Structures of the common cyclodextrins and their larger analogues-beyond the doughnut. Chem. Rev. 98, 1787–1802 (1998).CrossRefGoogle Scholar
  7. 7.
    Liu, L., Guo, Q.X.: Use of quantum chemical methods to study cyclodextrin chemistry. J. Incl. Phenom. Macrocycl. Chem. 50, 95–103 (2004)Google Scholar
  8. 8.
    French, A.D., Kelterer A.M., Johnson, Dowd M.K.: B3LYP/6-31G*, RHF/6-31G* and MM3 heats of formation of disaccharide analogs. J. Mol. Struct. 556, 303–313 (2000).CrossRefGoogle Scholar
  9. 9.
    Strati, G.L., Willett, J.L., Momany, F.A.: Ab initio computational study of β-cellobiose conformers using B3LYP/6-311++G**. Carbohydr. Res. 337, 1833–1849 (2002).CrossRefGoogle Scholar
  10. 10.
    Strati, G.L., Willett, J.L., Momany, F.A.: A DFT/ab initio study of hydrogen bonding and conformational preference in model cellobiose analogs using B3LYP/6-311++G**. Carbohydr. Res. 337, 1851–1859 (2002).CrossRefGoogle Scholar
  11. 11.
    Da Silva, C.O., Nascimento, M.A.C.: Ab initio conformational maps for disaccharides in gas phase and aqueous solution. Carbohydr. Res. 339, 113–122 (2004).CrossRefGoogle Scholar
  12. 12.
    Britto, M.A.F.O., Nascimento, C.S., dos Santos, H.F.: Structural analysis of cyclodextrins: a comparative study of classical and quantum mechanical methods. Quim. Nova. 27, 882–888 (2004).Google Scholar
  13. 13.
    Avakyan, V.G., Nazarov, V.B., Voronezheva, N.I.: DFT and PM3 calculations of the formation enthalpies and intramolecular H-bond energies in alpha-, beta-, and gamma-cyclodextrins. Russ. J. Phys. Chem. 79, S18–S27 (2005).Google Scholar
  14. 14.
    Frisch, M.J, Trucks, G.W., Schlegl, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A., Jr., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M, Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P. Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzales, C., Pople, J.A.: Gaussian Inc., Wallingford CT (2004).Google Scholar
  15. 15.
    Shannigrahi, M., Bagchi, S.: Time resolved fluorescence study of ketocyanine dye–β cyclodextrin interactions in aqueous and non-aqueous media. Chem. Phys. Letters. 403, 55–61 (2005).CrossRefGoogle Scholar
  16. 16.
    Panja, S., Chowdhury, P., Chakravorti, S.: Modulation of complexation of 4(1H-pyrrole 1-yl) benzoic acid with β-cyclodextrin in aqueous and non-aqueous environments. Chem. Phys. Letters. 393, 409–415 (2004).CrossRefGoogle Scholar
  17. 17.
    Karpfen, A.: Cooperative effects in hydrogen bonding. Adv. Chem. Phys. 123, 469–510 (2002).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • Alfred Karpfen
    • 1
  • Elisabeth Liedl
    • 1
  • Walter Snor
    • 1
  • Petra Weiss-Greiler
    • 1
  • Helmut Viernstein
    • 2
  • Peter Wolschann
    • 1
  1. 1.Institute of Theoretical ChemistryUniversity of ViennaWienAustria
  2. 2.Department of Pharmaceutical Technology and BiopharmaceuticsUniversity of ViennaWienAustria

Personalised recommendations