Skip to main content
Log in

Topological models for prediction of adductability of substituted cyclic organic compounds in urea

  • Original article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

The relationship of urea adductability of substituted cyclic organic compounds with topological descriptors has been investigated. Wiener’s index—a distance-based topological descriptor, molecular connectivity index—an adjacency-based topological descriptor and eccentric connectivity index—an adjacency-cum-distance based topological descriptor were employed for the present study. A data set comprising of 45 cyclic organic compounds was utilized. The values of all the three topological indices for every compound involved in the data set were computed using in-house computer program. The resultant data was analyzed and suitable models were developed after identification of adductible ranges. Subsequently, each compound in the data set was classified using these models either as urea adductible or non-adductible, which was then compared with the reported adductability in urea. Accuracy of prediction was found to vary from a minimum of 90% for a model based upon eccentric connectivity index to a maximum of 92% for model based upon Wiener’s index. Statistical analysis revealed the selected topological indices to be weakly or appreciably intercorrelated for the said data set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hollingsworth, M.D., Harris, K.D.M.: Urea inclusion compounds. In: Atwood, J.L., Davis, J.E.D., Macnicol, D.D., Vogtle, F. (eds.) Comprehensive Supramolecular Chemistry. Solid State Supramolecular Chemistry-Crystal Engineering, vol. 6, pp. 177–237. Pergamon Press, Oxford (1996).

    Google Scholar 

  2. Harris, K.D.M.: Urea Inclusion Compounds. In: Atwood, J.L., Steed, J.W. (eds.) Encyclopedia of Supramolecular Chemistry, vol. 2, pp. 1538–1549. Marcel Dekker, New York (2004).

    Google Scholar 

  3. Vaughan, P., Donohue, J.: The structure of urea. Interatomic distances and resonance in urea and related compounds. Acta Crystallogr. 5, 530–535 (1952).

    Article  CAS  Google Scholar 

  4. Smith, A.E.: The crystal structure of urea–hydrocarbon complexes. Acta Crystallogr. 5, 224–235 (1952).

    Article  CAS  Google Scholar 

  5. Harris, K.D.M., Thomas, J.M.: Structure aspects of urea inclusion compounds and their investigations by x-ray diffraction: a general discussion. J. Chem. Soc., Faraday Trans. 86, 2985–2996 (1990).

    Article  CAS  Google Scholar 

  6. Frank, S.G.: Inclusion compounds. J. Pharm. Sci. 64, 1585–1604 (1975).

    Article  CAS  Google Scholar 

  7. Harris, K.D.M., Smart, S.S., Hollingsworth, M.D.: Structural properties of α, ω-dibromoalkane/urea inclusion compounds: a new type of interchannel guest molecule ordering. J. Chem. Soc. Faraday Trans. 87, 3423–3429 (1991).

    Article  CAS  Google Scholar 

  8. Clement, R., Mazieres, C., Guibe, L.: Low temperature phase transition in urea-trioxane inclusion compounds. J. Solid State Chem. 5, 436–440 (1972).

    Article  CAS  Google Scholar 

  9. Lenne, H.U., Mez, H.C., Schlenk, W.: The lengths of molecules in inclusion channels of urea and thiourea. Liebigs Ann. Chem. 73, 70–96 (1968).

    Google Scholar 

  10. Smart, S.S., Baghdadi, A.E., Guillaume, F., Harris, K.D.M.: Conformational and vibrational properties of α, ω- dihalogenoalkane/urea inclusion compounds: a Raman scattering investigation. J. Chem. Soc. Faraday Trans. 90, 1313–1322 (1994).

    Article  CAS  Google Scholar 

  11. Hayes, D.G., Alstine, J.V., Setterwall, F.: Urea-based fractionation of fatty acids and glycerides of polyunsaturated and hydroxy fatty acid seed oils. J. Am. Oil Chem. Soc. 77, 207–215 (2000).

    Article  CAS  Google Scholar 

  12. Bishop, R., Dance, I.G.: New type of helical inclusion networks. Top. Curr. Chem. 149, 139–188 (1988).

    Google Scholar 

  13. Takemoto, K., Sonoda, N.: Inclusion compounds of urea, thiourea and selenourea. In: Atwood, J.W., Davis, J.E.D., MacNicol, D.D. (eds.) Inclusion Compounds, vol. 2, pp. 47–67. Academic Press, London (1984).

  14. Findlay, R.A.: Adductive crystallization. In: Schoen, H.M., Mcketta, J.J. (eds.) Interscience Library of Chemical Engineering and Processing. New Chemical Engineering Separation Techniques, vol. 1, pp. 257–318. Interscience Publishers, New York (1962).

  15. Thakral, S., Madan, A.K.: Topological models for prediction of adductability of branched aliphatic compounds in urea. J. Inclusion Phemon. Macrocyclic Chem. 56, 405–412 (2006).

    Article  CAS  Google Scholar 

  16. Estrada, E., Uriate, E.: Recent advances on the role of topological indices in drug discovery research. Current Med. Chem. 8, 1573–1588 (2001).

    CAS  Google Scholar 

  17. Nikolic, S., Kovacevic, G., Milicevic, A., Trinajstic, N.: The Zagreb Indices: thirty years after. Croat. Chem. Acta 76, 113–124 (2003).

    CAS  Google Scholar 

  18. Gozalbes, R., Doucet, J., Derouin, F.: Application of topological descriptors in QSAR and drug design: history and new trends. Curr. Drug Targets Infect. Disord. 2, 93–102 (2002).

    Article  CAS  Google Scholar 

  19. Wiener, H.: Correlation of heats of isomerization, and differences in heats of vaporization of isomers, among the paraffin hydrocarbons. J. Am. Chem. Soc. 69, 2636–2638 (1947).

    Article  CAS  Google Scholar 

  20. Wiener, H.: Structural determination of paraffin boiling points. J. Am. Chem. Soc. 69, 17–20 (1947).

    Article  CAS  Google Scholar 

  21. Balaban, A.T.: Topological indices based on topological distances in molecular graphs. Pure Appl. Chem. 55(2), 199–206 (1983).

    CAS  Google Scholar 

  22. Hosoya, H.: Topological indices as a sorting device for coding chemical structures. J. Chem. Doc. 12, 181–183 (1972).

    Article  CAS  Google Scholar 

  23. Randic, M.: On characterization of molecular branching. J. Am. Chem. Soc. 97(23), 6609–6615 (1975).

    Article  CAS  Google Scholar 

  24. Gutman, I., Randic, M.: Algebraic characterization of skeletal branching. Chem. Phys. Lett. 47, 15–19 (1977).

    Article  CAS  Google Scholar 

  25. Sharma, V., Goswami, R., Madan, A.K.: Eccentric connectivity index: a novel highly discriminating topological descriptor for structure-property and structure-activity studies. J. Chem. Inf. Comput. Sci. 37, 273–282 (1997).

    Article  CAS  Google Scholar 

  26. Kumar, V., Madan, A.K.: Topological models for the prediction of cyclindependent kinase 2 inhibitory activity of aminothiazoles. MATCH Commun. Math. Comput. Chem. 51, 59–78 (2004).

    CAS  Google Scholar 

  27. Swern, D.: Urea and thiourea complexes in separating organic compounds. Ind. Eng. Chem. 47, 216–221 (1955).

    Article  CAS  Google Scholar 

  28. Schiessler, R.W., Flitter, D.: Urea and thiourea adduction of C5–C42-hydrocarbons. J. Am. Chem. Soc. 74, 1720–1723 (1950).

    Article  Google Scholar 

  29. Truter, E.V.: Urea complexes of some branched-chain and cyclic esters. J. Chem. Soc. 2416–2419 (1951).

  30. Linstead, R.P., Whallwy, M.: The formation of crystalline complexes between urea and esters, and their application to separation of mixtures of esters. J. Chem. Soc. 2987–2989 (1950).

  31. Zimmerschied, W.J., Dinerstein, R.A., Wietkamp, A.W., Marschner, R.F.: Complexes of urea with linear aliphatic compounds. J. Am. Chem. Soc. 71, 2947 (1949).

    Article  CAS  Google Scholar 

  32. Redlich, O., Gable, C.M., Dunlop, A.K., Millar, R.W.: Addition compounds of urea and organic substances. J. Am. Chem. Soc. 72, 4153–4160 (1950).

    Article  CAS  Google Scholar 

  33. Mima, H., Nishikawa, M.: Inclusion compounds of α-lipoic acid methyl ester with urea and thiourea. J. Pharm. Sci. 53, 931–934 (1964).

    Article  CAS  Google Scholar 

  34. Gupta, S., Singh, M., Madan, A.K.: Predicting anti-HIV activity: computational approach using a novel topological descriptor. J. Comput. Aided Mol. Des. 15, 671–678 (2001).

    Article  CAS  Google Scholar 

  35. Gupta, S., Singh, M., Madan, A.K.: Application of graph theory: relationship of molecular connectivity index and atomic molecular connectivity index with anti-HSV activity. J. Mol. Struct. (Theochem) 571, 142–152 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Madan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thakral, S., Madan, A.K. Topological models for prediction of adductability of substituted cyclic organic compounds in urea. J Incl Phenom Macrocycl Chem 58, 321–326 (2007). https://doi.org/10.1007/s10847-006-9160-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-006-9160-8

Keywords

Navigation