A Conductometric Study of Complexation Reactions Between Dibenzo-18-Crown-6 (DB18C6) with Cu2+, Zn2+, Tl+ and Cd2+ Metal Cations in Dimethylsulfoxide–Ethylacetate Binary Mixtures

  • G.H. Rounaghi
  • G.N. Gerey
  • M.S. Kazemi


The complex formation between Cu2+, Zn2+, Tl+ and Cd2+ metal cations with macrocyclic ligand, dibenzo- 18-crown-6 (DB18C6) was studied in dimethylsulfoxide (DMSO)–ethylacetate (EtOAc) binary systems at different temperatures using conductometric method. In all cases, DB18C6 forms 1:1 complexes with these metal cations. The stability constants of the complexes were obtained from fitting of molar conductivity curves using a computer program, Genplot. The non-linear behaviour which was observed for variations of log K f of the complexes versus the composition of the mixed solvent was discussed in terms of changing the chemical and physical properties of the constituent solvents when they mix with one another and, therefore, changing the solvation capacities of the metal cations, crown ether molecules and even the resulting complexes with changing the mixed solvent composition. The results show that the selectivity order of DB18C6 for the metal cations in pure ethylacetate and pure dimethylsulfoxide is: Tl+ > Cu2+ > Zn2+ > Cd2+ but the selectivity order is changed with the composition of the mixed solvents. The values of enthalpy changes (ΔH°C) for complexation reactions were obtained from the slope of the van’t Hoff plots and the changes in standard enthalpy (ΔS°C) were calculated from the relationship: ΔG°C,298.15H°C − 298.15 ΔS°C. The obtained results show that in most cases, the complexes are enthalpy stabilized, but entropy destabilized and the values of ΔH°C and ΔS°C depend strongly on the nature of the medium.


Conductometry Cu2+, Zn2+, Tl+ and Cd2+ cations Dibenzo-18-Crown-6 Dimethylsulfoxide–Ethylacetate binary mixtures 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pedersen C.J., (1967) J. Am. Chem. Soc. 89: 2495CrossRefGoogle Scholar
  2. 2.
    Pedersen C.J., (1967) J. Am. Chem. Soc. 89: 7017CrossRefGoogle Scholar
  3. 3.
    Christensen J.J., D.J. Eataough, R.M. Izatt (1974) Chem. Rev. 74:351Google Scholar
  4. 4.
    Izatt R.M., J.S. Bradshaw, S.A. Nielsen, J.D. Lamb, J.J. Christensen, D. Sen (1985) Chem. Rev. 85:271CrossRefGoogle Scholar
  5. 5.
    Izatt R.M., K. Pawlak, J.S. Bradshaw, R.L. Bruening (1991). Chem. Rev. 91:1721CrossRefGoogle Scholar
  6. 6.
    Mohapatra P.K., D.S. Lakshima, D. Mohan, V.K. Manchanda, (2004) J. Memb. Sci. 232: 133CrossRefGoogle Scholar
  7. 7.
    Okada T. (1999) J. Chromatogr. A 834: 73CrossRefGoogle Scholar
  8. 8.
    Zawadiak J., D. Gilner, R. Mazurkiewicz, B. Orlinka, (2003) Appl. Catal. A Gen.. 227: 63Google Scholar
  9. 9.
    Anderson J.D., E.S. Paulsen, D.V. Dearden (2003) Int. J. Mass Spectrom. 227: 63–76CrossRefGoogle Scholar
  10. 10.
    Lee S.W., H.N. Lee, H.S. Kim, J.L. Beauchamp, (1998) J. Am. Chem. Soc. 120: 5800CrossRefGoogle Scholar
  11. 11.
    Julian R.R., J.L. Beauchamp, (2001) Int. J. Mass Spectrom. 210/211: 613CrossRefGoogle Scholar
  12. 12.
    Wasi C.M., B. Waller, (2000) Ind. Eng. Chem. Res. 39: 4837CrossRefGoogle Scholar
  13. 13.
    Nishihama S., T. Hirai, I. Komosawa, (2001) Ind. Eng. Chem. Res. 40: 3085CrossRefGoogle Scholar
  14. 14.
    Barthel J., H.J. Gores, R. Neueder, A. Schmid, (1999) Pure Appl. Chem. 71: 1705CrossRefGoogle Scholar
  15. 15.
    Barthel H.J., et al (1995) Pure Appl. Chem. 67: 919CrossRefGoogle Scholar
  16. 16.
    Thaler A., B.G. Cox, H. Schneider, (2003) Inorganic Chimica Acta 351: 123CrossRefGoogle Scholar
  17. 17.
    Buschumann H.J., E. Schollmeyer, (2000) Inorganic Chimica Acta 298: 120CrossRefGoogle Scholar
  18. 18.
    Karkhaneei E., M.H. Zebrajadian, M. Shamsipur, (2001) J. Chin. Chem. Soc. 48: 727Google Scholar
  19. 19.
    Sil A., A. Srivastava, (2004) Supramol. Chem. 161:343CrossRefGoogle Scholar
  20. 20.
    Rounaghi G.H., A.S. Yazdi, Z. Monsef, (2002) J. Incl. Phenom. Macro. 43: 231CrossRefGoogle Scholar
  21. 21.
    Rounaghi G.H., M. Chamsaz, A. Nezhadali, (2002) J. Incl. Phenom. Macro. 43: 231CrossRefGoogle Scholar
  22. 22.
    Rounaghi G.H., N. Khazaee, K.R. Sanavi, (2005) Polish J. Chem. 79: 1143Google Scholar
  23. 23.
    Rounaghi G.H., F. Mofazzeli, (2005) J. Incl. Phenom. Macro. 51: 205CrossRefGoogle Scholar
  24. 24.
    Genplot. Computer GraphicService. U.S.A (1989)Google Scholar
  25. 25.
    Rounaghi G.H., Z. Eshaghi, E. Ghimati, (1997) Talanta 47: 275CrossRefGoogle Scholar
  26. 26.
    Izutzu K. Electrochemistry in Nonaqueous Solutions, Wiley-VCH (2002)Google Scholar
  27. 27.
    Hiraoka M. Crown Compounds their Chracterisitics and Applications, Elsevier Scientific-Amsterdam, (1982) 74Google Scholar
  28. 28.
    Chmurzynski L., M. Makowski, A. Kozak, M. Czaja, (2003) J. Chem. Thermodyn. 35: 1645CrossRefGoogle Scholar
  29. 29.
    Jozwiak M., (2003) J. Mol. Liquids 108/1–3: 175CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of SciencesFerdowsi University of MashhadMashhadIran
  2. 2.Department of Chemistry, Faculty of SciencesAzad University of BojnordBojnordIran

Personalised recommendations