Enantioselective Oxidation of Sulfides Catalyzed by Chiral MoV and CuII Complexes of Catechol-Appended β-Cyclodextrin Derivatives in Water

  • Hidetake Sakuraba
  • Hiroshi Maekawa


The two modified β-cyclodextrin (β-CD) derivatives having catechol-type ligand (2,3- and 3,4-dihydroxy groups on the benzoate ring) were synthesized. The chiral catalytic activity of their MoV and CuII complexes was examined in the asymmetric oxidation of aromatic sulfides using hydrogen peroxide in water (pH 6.0). The oxidation with the MoV complexes of two β-CD derivatives were more accelerated than that with the CuII complexes. The sign of the optical rotation of the sulfoxides obtained in the above two cases showed the opposite configuration in the oxidation of the same sulfide. The difference of the enantioselectivity appeared also between the two complexes of the 2,3- and 3,4-dihydroxybenzoate derivatives with the same metal ion. While the use of the MoV complexes with the catechol derivatives yielded the sulfoxides with 35–65% ee, the use of the CuII complexes gave the products with the␣opposite configuration at 26–52% ee. The chiral induction in the oxidation, observed conversely between the␣catalysts, was reflected on the chiral conformation of the respective metal catalysts, showed in Induced Circular Dichroism (ICD) spectra. The highest optical yield, 65%, was observed in the oxidation of butyl phenyl sulfide using the catalytic amount (0.1 equiv) of the MoV complex with mono-6-O-(3,4-dihydroxybenzoyl)-β-CD. The reaction gave predominantly the (S)-sulfoxide in 95% chemical yield.

Key words

aqueous solution aromatic sulfide β-cyclodextrin catalytic asymmetric oxidation catechol moiety hydrogen peroxide metal complex 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cramer, F., Dietsche, W. 1959Chem. Ber921739Google Scholar
  2. 2.
    Bender, M.L., Komiyama, M. 1978Cyclodextrin ChemistrySpringer VerlagBerlinGoogle Scholar
  3. 3.
    F. Toda and A. Ueno (eds.), Cyclodextrin, Sangyo Tosho, Tokyo (1995)Google Scholar
  4. 4.
    H. Sakuraba , M. Horii, and T. Takezutsumi: (2000). Nippon Kagaku Kaishi 685; Chem. Abstr. 134, 30601z (2001)Google Scholar
  5. 5.
    Takahashi, K., Hattori, K. 1994J. Incl. Phenom. Mol. Recogn. Chem171Google Scholar
  6. 6.
    Sakuraba, H., Natori, K., Tanaka, Y. 1991J. Org. Chem564124CrossRefGoogle Scholar
  7. 7.
    Sakuraba, H., Ushiki, S. 1990Tetrahedron Lett315349CrossRefGoogle Scholar
  8. 8.
    Banfi, S., Colonna, S. 1983Synthetic Commun131049Google Scholar
  9. 9.
    Inoue, Y., Dong, F., Yamamoto, K., Tong, L. H., Tsuneishi, H., Hakushi, T., Tai, A. 1995J. Am. Chem. Soc11711033CrossRefGoogle Scholar
  10. 10.
    Bonchio, M., Carofiglio, T., Furia, F. D., Fornasier., R. 1995J. Org. Chem605986Google Scholar
  11. 11.
    Rodgers, S. J., Ng, C. Y., Raymond, K. N. 1985J. Am. Chem. Soc1074094CrossRefGoogle Scholar
  12. 12.
    Ipatieff, V. N., Pines, H., Friedman, B. S. 1938J. Am. Chem. Soc602731Google Scholar
  13. 13.
    Czarnik, W. 1984J. Org. Chem49924CrossRefGoogle Scholar
  14. 14.
    Jacobus, J., Mislow, K. 1967J. Am. Chem. Soc895228CrossRefGoogle Scholar
  15. 15.
    Spivack, B., Pori, Z., Steifel, E. I. 1975Inorg. Nucl. Chem. Lett11501CrossRefGoogle Scholar
  16. 16.
    Beheshti, A., Clegg, W., Hosai Sadr, M. 2001Polyhedron20179CrossRefGoogle Scholar
  17. 17.
    Lu, S., Ke, Y., Li, J., Zhang, Y. 2002Cryst. Res. Technol371153Google Scholar
  18. 18.
    Casarini, D., Foresti, E., Gasparrini, F., Lunazzi, L., Mac-ciantelli, D., Misti, D., Villani, C. 1993J.Org. Chem585674Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Department of Applied Material and Life SienceKanto Gakuin University Kanazawa-kuJapan

Personalised recommendations