Skip to main content
Log in

Enantioselective Oxidation of Sulfides Catalyzed by Chiral MoV and CuII Complexes of Catechol-Appended β-Cyclodextrin Derivatives in Water

  • Published:
Journal of inclusion phenomena and macrocyclic chemistry Aims and scope Submit manuscript

Abstract

The two modified β-cyclodextrin (β-CD) derivatives having catechol-type ligand (2,3- and 3,4-dihydroxy groups on the benzoate ring) were synthesized. The chiral catalytic activity of their MoV and CuII complexes was examined in the asymmetric oxidation of aromatic sulfides using hydrogen peroxide in water (pH 6.0). The oxidation with the MoV complexes of two β-CD derivatives were more accelerated than that with the CuII complexes. The sign of the optical rotation of the sulfoxides obtained in the above two cases showed the opposite configuration in the oxidation of the same sulfide. The difference of the enantioselectivity appeared also between the two complexes of the 2,3- and 3,4-dihydroxybenzoate derivatives with the same metal ion. While the use of the MoV complexes with the catechol derivatives yielded the sulfoxides with 35–65% ee, the use of the CuII complexes gave the products with the␣opposite configuration at 26–52% ee. The chiral induction in the oxidation, observed conversely between the␣catalysts, was reflected on the chiral conformation of the respective metal catalysts, showed in Induced Circular Dichroism (ICD) spectra. The highest optical yield, 65%, was observed in the oxidation of butyl phenyl sulfide using the catalytic amount (0.1 equiv) of the MoV complex with mono-6-O-(3,4-dihydroxybenzoyl)-β-CD. The reaction gave predominantly the (S)-sulfoxide in 95% chemical yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. F. Cramer W. Dietsche (1959) Chem. Ber 92 1739 Occurrence Handle1:CAS:528:DyaF3cXit1yrtg%3D%3D

    CAS  Google Scholar 

  2. M.L. Bender M. Komiyama (1978) Cyclodextrin Chemistry Springer Verlag Berlin

    Google Scholar 

  3. F. Toda and A. Ueno (eds.), Cyclodextrin, Sangyo Tosho, Tokyo (1995)

  4. H. Sakuraba , M. Horii, and T. Takezutsumi: (2000). Nippon Kagaku Kaishi 685; Chem. Abstr. 134, 30601z (2001)

  5. K. Takahashi K. Hattori (1994) J. Incl. Phenom. Mol. Recogn. Chem 17 1 Occurrence Handle1:CAS:528:DyaK2cXlsl2qtbc%3D

    CAS  Google Scholar 

  6. H. Sakuraba K. Natori Y. Tanaka (1991) J. Org. Chem 56 4124 Occurrence Handle10.1021/jo00013a010 Occurrence Handle1:CAS:528:DyaK3MXkvFWkt7s%3D

    Article  CAS  Google Scholar 

  7. H. Sakuraba S. Ushiki (1990) Tetrahedron Lett 31 5349 Occurrence Handle10.1016/S0040-4039(00)98069-9 Occurrence Handle1:CAS:528:DyaK3MXkt1antw%3D%3D

    Article  CAS  Google Scholar 

  8. S. Banfi S. Colonna (1983) Synthetic Commun 13 1049 Occurrence Handle1:CAS:528:DyaL2cXosFGitQ%3D%3D

    CAS  Google Scholar 

  9. Y. Inoue F. Dong K. Yamamoto L. H. Tong H. Tsuneishi T. Hakushi A. Tai (1995) J. Am. Chem. Soc 117 11033 Occurrence Handle10.1021/ja00149a037 Occurrence Handle1:CAS:528:DyaK2MXovF2gsbs%3D

    Article  CAS  Google Scholar 

  10. M. Bonchio T. Carofiglio F. D. Furia R. Fornasier. (1995) J. Org. Chem 60 5986 Occurrence Handle1:CAS:528:DyaK2MXot1OntLc%3D

    CAS  Google Scholar 

  11. S. J. Rodgers C. Y. Ng K. N. Raymond (1985) J. Am. Chem. Soc 107 4094 Occurrence Handle10.1021/ja00299a065 Occurrence Handle1:CAS:528:DyaL2MXktlOntLg%3D

    Article  CAS  Google Scholar 

  12. V. N. Ipatieff H. Pines B. S. Friedman (1938) J. Am. Chem. Soc 60 2731 Occurrence Handle1:CAS:528:DyaA1MXhtVOr

    CAS  Google Scholar 

  13. W. Czarnik (1984) J. Org. Chem 49 924 Occurrence Handle10.1021/jo00179a033 Occurrence Handle1:CAS:528:DyaL2cXhtVartLw%3D

    Article  CAS  Google Scholar 

  14. J. Jacobus K. Mislow (1967) J. Am. Chem. Soc 89 5228 Occurrence Handle10.1021/ja00996a026 Occurrence Handle1:CAS:528:DyaF1cXjvVOgtA%3D%3D

    Article  CAS  Google Scholar 

  15. B. Spivack Z. Pori E. I. Steifel (1975) Inorg. Nucl. Chem. Lett 11 501 Occurrence Handle10.1016/0020-1650(75)80024-9 Occurrence Handle1:CAS:528:DyaE2MXlt1Cntbc%3D

    Article  CAS  Google Scholar 

  16. A. Beheshti W. Clegg M. Hosai Sadr (2001) Polyhedron 20 179 Occurrence Handle10.1016/S0277-5387(00)00594-5 Occurrence Handle1:CAS:528:DC%2BD3MXhsVKrt74%3D

    Article  CAS  Google Scholar 

  17. S. Lu Y. Ke J. Li Y. Zhang (2002) Cryst. Res. Technol 37 1153 Occurrence Handle1:CAS:528:DC%2BD38XovFOitrc%3D

    CAS  Google Scholar 

  18. D. Casarini E. Foresti F. Gasparrini L. Lunazzi D. Mac-ciantelli D. Misti C. Villani (1993) J.Org. Chem 58 5674 Occurrence Handle1:CAS:528:DyaK2cXns1Oisw%3D%3D

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidetake Sakuraba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakuraba, H., Maekawa, H. Enantioselective Oxidation of Sulfides Catalyzed by Chiral MoV and CuII Complexes of Catechol-Appended β-Cyclodextrin Derivatives in Water. J Incl Phenom Macrocycl Chem 54, 41–45 (2006). https://doi.org/10.1007/s10847-005-3490-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-005-3490-9

Key words

Navigation