Skip to main content
Log in

Diffusion Measurements vs. Chemical Shift Titration for Determination of Association Constants on the Example of Camphor–Cyclodextrin Complexes

  • Original Research Article
  • Published:
Journal of inclusion phenomena and macrocyclic chemistry Aims and scope Submit manuscript

Abstract

Measurements on camphor–cyclodextrin complexes reveal that precise association constants are more easily determined by chemical shift titration. Diffusion measurements using HR-DOSY allow easy following of the complex composition at different concentration ratios and estimation of the binding energy. Linear dependence of the diffusion coefficients on the molecular mass of free and associated cyclodextrins has been observed in D2O. The solution structures of α- and β-cyclodextrin complexes of camphor in D2O were deduced from intermolecular cross-relaxation data. Different preferential orientation in the 2:1 α-CD and 1:1 β-CD species have been derived in contrast to the loose 1:1 complex with γ-CD. Proton NMR chemical shift values proved to be much more sensitive to diastereomeric complex formation than diffusion coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Hirose: J. Incl. Phen. 39, 193 (2001) and references cited therein.

  2. L. Fielding (2000) Tetrahedron 56 6151 Occurrence Handle10.1016/S0040-4020(00)00492-0 Occurrence Handle1:CAS:528:DC%2BD3cXlvVKksrs%3D

    Article  CAS  Google Scholar 

  3. H.-J. Schneider R. Kramer S. Simova U. Schneider (1988) J. Am. Chem. Soc. 110 6444

    Google Scholar 

  4. K. Cameron and L. Fielding: J. Org. Chem 66, 6891 (2001); K. Cameron and L. Fielding: Magn. Res. Chem. 40, S106 (2002); R. Wimmer, F. Aachmann, K. Larsen and S. Petersen: Carbohydr. Res. 337, 841 (2002).

  5. A. Laverde SuffixJr G. Conceicao S. Queiroz F. Fujiwara A. Marsaioli (2002) Magn. Res. Chem. 40 433 Occurrence Handle10.1002/mrc.1043 Occurrence Handle1:CAS:528:DC%2BD38XkvV2gsbs%3D

    Article  CAS  Google Scholar 

  6. L. Frish F. Sansone A. Casnati R. Ungaro Y. Cohen (2000) J. Org. Chem. 65 5026 Occurrence Handle10.1021/jo0001784 Occurrence Handle1:CAS:528:DC%2BD3cXkslWmtrY%3D

    Article  CAS  Google Scholar 

  7. R. Rymden J. Calfors P. Stilbs (1983) J. Incl. Phen. 1 159 Occurrence Handle10.1007/BF00656818 Occurrence Handle1:CAS:528:DyaL2cXhvFaiur4%3D

    Article  CAS  Google Scholar 

  8. Wu, D., Chen, A. and Johnson, C. Jr.: J. Magn. Res. A 115, 260 (1995); Pelta, M., Barjat, H., Morris, G., Davis, A. and Hammond, S.: Magn. Res. Chem. 36, 706 (1998).

  9. Implemented e.g. in XWINNMR 3.1 for Bruker AVANCE NMR spectrometers.

  10. L. Avram and Y. Cohen: J. Org. Chem. 67, 2639 (2002) and references therein.

  11. P. Job: Ann. Chim. 9, 113 (1928); Gil, V. and Oliveira, N.: J. Chem. Ed. 473, (1990).

  12. C. Wilcox: In H.-J. Schneider and H. Du¨ rr (eds.), Frontiers in Supramolecular Organic Chemistry and Photochemistry, Weinheim, VCH (1991), pp. 123.

  13. D. Stauffer R. Berrans D. Dougherty (1990) J. Org. Chem. 55 2762 Occurrence Handle10.1021/jo00296a038 Occurrence Handle1:CAS:528:DyaK3cXhvFOnurc%3D

    Article  CAS  Google Scholar 

  14. M. Aszetemborska, A. Bielejewska, K. Duszczyk and D. Sybilska: J. Chromat. A 874, 73 (2000); H. Dodziuk, A. Ejchart, O. Lukin and M. Vysotsky: J. Org. Chem. 64, 1503 (1999).

    Google Scholar 

  15. W. Anczewski H. Dodziuk A. Ejchart (2003) Chirality 15 654 Occurrence Handle10.1002/chir.10277 Occurrence Handle1:CAS:528:DC%2BD3sXmt1GgtLk%3D

    Article  CAS  Google Scholar 

  16. H. Dodziuk K. Nowinski W. Kozminski G. Dolgonos (2003) Org. Biomol. Chem. 1 581 Occurrence Handle10.1039/b209272g Occurrence Handle1:CAS:528:DC%2BD3sXisFegsrw%3D

    Article  CAS  Google Scholar 

  17. T.-L. Hwang A.J. Shaka (1992) J. Am. Chem. Soc. 114 3157 Occurrence Handle10.1021/ja00034a083 Occurrence Handle1:CAS:528:DyaK38XhvVKgs7w%3D

    Article  CAS  Google Scholar 

  18. D. Wu A. Chen C.S. Johnson SuffixJr. (1995) J. Magn. Res. A 115 260 Occurrence Handle10.1006/jmra.1995.1176 Occurrence Handle1:CAS:528:DyaK2MXnsVGht7k%3D

    Article  CAS  Google Scholar 

  19. E. Cabrita S. Berger (2001) Magn. Reson. Chem. 39 S142 Occurrence Handle10.1002/mrc.917 Occurrence Handle1:CAS:528:DC%2BD3MXovFeju78%3D

    Article  CAS  Google Scholar 

  20. N. Funasaki M. Nomura S. Ishikawa S. Neya (2001) J. Phys. Chem. B 105 7361 Occurrence Handle10.1021/jp010774h Occurrence Handle1:CAS:528:DC%2BD3MXks1eksbg%3D

    Article  CAS  Google Scholar 

  21. K. Miyajima M. Saweda M. Nagakari (1983) Bull. Chem. Soc. Jpn. 56 3556 Occurrence Handle10.1246/bcsj.56.3556 Occurrence Handle1:CAS:528:DyaL2cXhtl2ms7g%3D

    Article  CAS  Google Scholar 

  22. P. Bonnet C. Jaime L. Morin-Allory (2001) J. Org. Chem. 66 689 Occurrence Handle10.1021/jo0008284 Occurrence Handle1:CAS:528:DC%2BD3MXislKkuw%3D%3D

    Article  CAS  Google Scholar 

  23. A. Botsi B. Perly E. Hadjoudis (1997) J. Chem. Soc. PT2 89

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetlana Simova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simova, S., Berger, S. Diffusion Measurements vs. Chemical Shift Titration for Determination of Association Constants on the Example of Camphor–Cyclodextrin Complexes. J Incl Phenom Macrocycl Chem 53, 163–170 (2005). https://doi.org/10.1007/s10847-005-2631-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-005-2631-5

Key words

Navigation