Hard–Soft Receptors, Tetrakis[(N,N-diethylaminocarbonyl)methoxy] thiacalix[4]arene Derivatives with cone and 1,3-alternate Conformation

  • Carol Pérez Casas
  • Takehiko Yamato


Direct O-alkylation of p-tert-butyltetrathiacalix[4]arene with N,N-diethylchloroacetamide afforded two conformational isomers (1,3-alternate and cone) of tetrakis[(N,N-diethylaminocarbonyl)methoxy]thiacalix[4]arene and 1,3-disubstituted bis[(N,N-diethylaminocarbonyl)methoxy]thiacalix[4]arene, depending on the base used. The complaxation behaviors of the tetrakis isomers were assessed by 1H NMR titration experiments. Evidence of 1:2 (homo- and hetero-dinuclear) complexes formation of 1,3-alternate-tetrakis[(N,N-diethylaminocarbonyl)methoxy]thiacalix[4]arene with alkali (K+ and Na+) or transition (Ag+) metal ions was obtained. Interestingly, it was found that the cone-tetrakis[(N,N-diethylaminocarbonyl)methoxy]thiacalix[4]arene required a prior Ag+ complexation to form 1:2 heterodinuclear complex.


conformation hard–soft receptors ionophores metal complexation O-alkylation thiacalix[4]arene 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    (a) H. Kumagi, M. Hasegawa, S. Miyanari, Y. Sugawa, Y. Sato, T. Hori, S. Ueada, H. Kamiyama, and S. Miyano: Tetrahedron Lett. 38, 3971 (1997). For a comprehensive review of all aspects of calixarene chemistry, see: (b) C.D. Gutsche: Calixarenes, The Royal Society of Chemistry, Cambridge (1989); (c) C.D. Gutsche: Acc. Chem. Res. 16, 161 (1983). (d) J. Vicens and V. Böhmer: Calixarenes: A Versatile Class of Macrocyclic Compounds, Kluwer Academic Publishers, Cambridge (1990); (e) S. Shinkai: In G.W. Gokel (ed.), Advances in Supramolecular Chemistry, Vol. 3, Jai press inc ltd., London (1993), 97 pp: (f) V. Böhmer: Angew. Chem. Int. Ed. Engl. 34, 713 (1995); (g) C.D. Gutsche: Calixarenes Revisited, Royal Society of Chemistry, Cambridge (1998).Google Scholar
  2. 2.
    (a) K. Iwamoto and S. Shinkai: J. Org. Chem. 57, 7066 (1992). (b) N. Iki, F. Marumi, T. Fujimoto, N. Morohashi, S. Miyano: J. Chem. Soc. Perkin Trans.2, 2745 (1998).Google Scholar
  3. 3.
    Lhoták, P., Himl, M., Stibor, I., Petrícková, H. 2002Tetrahedron Lett.439621CrossRefGoogle Scholar
  4. 4.
    Yamato, T., Zhang, F., Kumamaru, K., Yamamoto, H. 2002J. Incl. Phenom.4251CrossRefGoogle Scholar
  5. 5.
    (a) A. Arduini, E. Ghidini, A. Pochini, R. Ungaro, G.D. Andreetti, G. Calestani, and F. Ugozzoli: J. Incl. Phenom. 6, 119 (1988); (b) H. Matsumoto, S. Nishino, M. Takeshita, S. Shinkai: Tetrahedron 51, 4647 (1995); (c) N.J. Wolf, E.M. Georgiev, A.T. Yordanov, B.R. Whittlesey, H.F. Kock, D. M. Roundhil: Polyhedron 18, 885 (1999).Google Scholar
  6. 6.
    (a) N. Sabbatinim, M. Guardigli, A. Mecati, V. Balzani, R. Ungaro, E. Ghidini, A. Casnati, and A. Pochini: J. Chem. Soc., Chem. Commun. 878 (1990); (b) H. Kumagai, M. Hasegawa, S. Miyanari, Y. Sugawa, Y. Sato, T. Hori, S. Ueda, H. Kamiyama, and S. Miyano: Tetrahedron Lett. 38, 3971 (1997).Google Scholar
  7. 7.
    Lamartine, R., Bavoux, C., Vocason, F., Martin, A., Senlis, G., Perrin, M. 2001Tetrahedron Lett.421021CrossRefGoogle Scholar
  8. 8.
    Benesi, H.A., Hildebrand, J.H. 1949J. Am. Chem. Soc.712073CrossRefGoogle Scholar
  9. 9.
    (a) P. Lhoták, L. Kaplanek, I. Stibor, J. Lang, H. Dvorákova, R. Hrabal, and J. Sykora: Tetrahedron Lett. 41, 9339 (2000). (b) N. Iki, N. Morohashi, F. Narumi, T. Fujimoto, T. Suzuki, and S. Miyano: Tetrahedron Lett.40, 7337 (1999).Google Scholar
  10. 10.
    Yamato, T., Iwasa, T., Zhang, F. 2001J. Incl. Phenom39285CrossRefGoogle Scholar
  11. 11.
    (a) N. Iki, N. Morohashi, F. Narumi, and S. Miyano: Bull. Chem. Soc. Jpn. 71, 1597 (1998); (b) N. Iki, H. Kumagai, N. Morohashi, K. Ejima, M. Hasegawa, S. Miyanari, and S. Miyano: Tetrahedron Lett. 39, 7559 (1998); (c) N. Morohashi, T. Hattori, K. Yokomakura, C. Kabuto, F. Narumi, T. Fujimoto, T. Suzuki, and S. Miyano: Tetrahedron Lett.43, 7769 (2002); (d) F.W.B. van Leeuwen, H. Beijleveld, H. Kooijman, A.L. Spek, W. Verboom, and D.N. Reinhoudt, J. Org. Chem. 69, 3928 (2004)Google Scholar
  12. 12.
    The stoichiometry of 1:2 for 1,3-alternate-3 and 1:1 for cone-3 complexes are in good agreement with the stoichiometry predicted based on the conformer preferences of analogous derivatives. (a) A. Ikeda, and S. Shinkai, J. Am. Chem. Soc. 116, 3102 (1994). (b) N. Koh, K. Araki, S. Shinkai, Z. Asfari, and J. VicensTetrahedron, Lett. 36, 6095 (1995).Google Scholar
  13. 13.
    1H NMR spectra of titration of 3 with AgClO4, KClO4 are quite similar, showing that the nature of the counterion influences negligibly in the general features of complexation.Google Scholar
  14. 14.
    Cajan, M., Lhoták, P., Lang, J., Dvoráková, H., Stibor, I., Koca, J. 2002J. Chem. Soc. Perkin Trans.21922Google Scholar
  15. 15.
    The percentage (%) cation extracted from neutral picrate solution into dichloromethane for Na+, K+ and Ag+ are 93, 78 and 99, respectively. The K ass for Ag+was not measured due to the chemical shift scarcely change.Google Scholar
  16. 16.
    (a)N. Koh, T. Imada, T. Nagasaki, S. Shinkai: Tetrahedron Lett. 35, 4157 (1994); (b) A. Bilyk, A.K. Hall, J.M. Harrowfield, M.W. Hosseini, B.W. Skelton, and A.H. White: Inorg. Chem. 40, 672 (2001); (c) S. Takemoto, K. Otsuka, T. Otsuka, H. Seino, Y. Mizobe, and M. Hidai: Chem. Lett., 6 (2002); (d) T. Kajiwara, S. Yokozawa, T. Ito, N. Iki, N. Morohashi, and S. Miyano: Angew. Chem., Int. Ed.41, 2076 (2002).Google Scholar
  17. 17.
    Morohashi, N., Hattori, T., Yokomakura, K., Kabuto, C., Miyano, S. 2002Tetrahedron Lett.437769CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Department of Applied Chemistry, Faculty of Science and EngineeringSaga UniversitySagaJapan

Personalised recommendations