Study on the Inclusion Compounds of Eugenol with α-, β-, γ- and Heptakis (2,6-di-O-methyl)-β-cyclodextrins

  • Yan Yang
  • Le Xin Song


Several host–guest inclusion compounds of eugenol as a guest molecule and cyclodextrins (α-,β-,γ-CD) and heptakis (2,6-di-O-methyl)-β-cyclodextrin (DMβ-CD) as hosts were investigated in the solid state and in aqueous solution. The one-to-one solid inclusion compounds of eugenol and β-CD or γ-CD were prepared, but those of eugenol with α- or DMβ-CD were not obtained under the same condition. However, the UV-visible absorption spectroscopy data indicated that the liquid guest could form a 1:1 inclusion compound with all four hosts respectively in aqueous solution. The two solid inclusion compounds were characterized by powder X-ray diffraction (XRD), infrared spectroscopy (IR), thermogravimetric analysis (TG), differential scanning calorimetry (DSC) and nuclear magnetic resonance (NMR). The association constants (K), calculated from the modified Benesi–Hidebrand equation, of eugenol with α-, β-, γ- and DMβ-CD is 4.95 × 104, 3.96 × 105, 1.47 × 105 and 9.33 × 104 mol−1 dm3, respectively.


cyclodextrin eugenol heptakis(2 6-di-O-methyl)-β- inclusion compound 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Szejtli. Cyclodextrin Technology. Kluwer Academic Publishers (1988)Google Scholar
  2. 2.
    Song, L.X. 2001Acta Chim. Sinica591201Google Scholar
  3. 3.
    Song, L.X., Guo, Z.J. 2001Chin. J. Inorg. Chem .17457Google Scholar
  4. 4.
    Cao, YJ., Xiao, XH., Lu, R.H., Guo, Q.X. 2003J. Incl. Phenom. Mol. Recogn. Chem.46195CrossRefGoogle Scholar
  5. 5.
    Harata, K, Song, LX., Morii, H. 2000Supramol. Chem.11217Google Scholar
  6. 6.
    Yi, ZP., Hu, J., Chen, H.L. 2003J. Incl. Phenom. Mol. Recogn. Chem.451CrossRefGoogle Scholar
  7. 7.
    Melani, F., Bettinetti, GP., Mura, P., Maderioli, A. 1995J. Incl. Phenom. Mol. Recogn. Chem.22131CrossRefGoogle Scholar
  8. 8.
    Zhang, L., Lerner, S., Rustrum, WV., Hofman, G.A. 1999Bioelectrochem. Bioenerg.48453CrossRefPubMedGoogle Scholar
  9. 9.
    Buschmann, HJ., Knittnl, D., Schollmeyer, E. 2001J. Incl. Phenom. Mol. Recogn. Chem.40169CrossRefGoogle Scholar
  10. 10.
    Song, LX., Tu, Z., Zhao, L., Guo, Z.J. 2002Chin. J. Inorg. Chem.18518Google Scholar
  11. 11.
    Song, LX., Keng, X., Guo, Z.J. 2002Acta Chim. Sinica601419Google Scholar
  12. 12.
    Rekharsky, M.V., Inoue, Y. 1998Chem. Rev.981875CrossRefPubMedGoogle Scholar
  13. 13.
    Divakar, S., Maheswaran, M.M. 1997J. Incl. Phenom. Mol. Recogn. Chem.27113CrossRefGoogle Scholar
  14. 14.
    Song, LX., Meng, QJ., You, X.Z. 1996Acta Chim. Sinica54777Google Scholar
  15. 15.
    intaru, M., Hillebrand, , Thevand, A.T 2003J. Incl. Phenom. Mol. Recogn. Chem.4535CrossRefGoogle Scholar
  16. 16.
    Nowakowska, M., Smoluch, M., Sendor, D. 2001J. Incl. Phenom. Macro. Chem.40213CrossRefGoogle Scholar
  17. 17.
    Cortes, ME., Sinisterra, RD., Avilacampos, MJ., Tortamano, N., Rocha, R.G. 2001J. Incl. Phenom. Macro.Chem.40297CrossRefGoogle Scholar
  18. 18.
    Song, LX., Li, BL., Jiang, R., Ding, JG., Meng, Q.J. 1997Chin. Chem. Lett.8613Google Scholar
  19. 19.
    lewis, E.A., Hansen, L.D. 1973J. Chem. Soc., Perkin Trans.22081Google Scholar
  20. 20.
    Gelb, RI., Schwartz, LM., Radeods, M., Edmonds, R.B., Laufer, D.A. 1982J. Am. Chem. Soc.1046283CrossRefGoogle Scholar
  21. 21.
    Bertrand, GL., Faulkner, JR., Hans, S.M., Armstrong, D.W. 1989J. Phys. Chem.936863CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations