The Formation and Stability of the [FePy3Cl3]· Py Clathrate in the Pyridine–Iron(III) Chloride System: Phase Diagram and Solid–Gas Equilibria Study

  • Andrew G. Ogienko
  • Elissa A. Ukraintseva
  • Tatyana A. Chingina
  • Vladislav Yu. Komarov
  • Andrey Yu. Manakov


The phase diagram of the pyridine–iron(III) chloride system has been studied for the 223–423 K temperature and 0–56 mass-% concentration ranges using differential thermal analysis (DTA) and solubility techniques. A solid with the highest pyridine content formed in the system was found to be an already known clathrate compound, [FePy3Cl3]·Py. The clathrate melts incongruently at 346.9 ± 0.3 K with the destruction of the host complex: [FePy3Cl3]·Py(solid)=[FePy2Cl3](solid) + liquor. The thermal dissociation of the clathrate with the release of pyridine into the gaseous phase (TGA) occurs in a similar way: [FePy3Cl3]·Py(solid)=[FePy2Cl3](solid) + 2 Py(gas). Thermodynamic parameters of the clathrate dissociation have been determined from the dependence of the pyridine vapour pressure over the clathrate samples versus temperature (tensimetric method). The dependence experiences a change at 327 K indicating a polymorphous transformation occurring at this temperature. For the process \({1 \over 2}[\hbox{FePy}_{3}\hbox{Cl}_{3}]\cdot \hbox{Py}_{\rm (solid)} = {1 \over 2}[\hbox{FePy}_{2}\hbox{Cl}_{3}]_{\rm (solid)} + \hbox{Py}_{\rm (gas)}\) in the range 292–327 K, ΔH \(^{0}_{298}\)=70.8 ± 0.8 kJ/mol, ΔS \(^{0}_{298}\)=197 ± 3 J/(mol K), ΔG \(^{0}_{298}\)=12.2 ± 0.1 kJ/mol; in the range 327–368 K, ΔH \(^{0}_{298}\)=44.4 ± 1.3 kJ/mol, ΔS \(^{0}_{298}\)=116 ± 4 J/(mol K), ΔG \(^{0}_{298}\)=9.9 ± 0.3 kJ/mol.


iron(III) chloride phase diagram pyridine thermodynamic parameters vapour pressure Werner clathrates 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Lipkowski. In Atwood J.L., J.E.D. Davies, and D.D. MacNicol (eds.), Inclusion Compounds Vol. 1 Academic Press, London (1984), pp. 59–103.Google Scholar
  2. 2.
    J. Hanotier and P. Radzitzky: In Atwood J.L., J.E.D. Davies and D.D. MacNicol (eds.), Inclusion Compounds Vol 1, Academic Press, London (1984), pp. 104–134.Google Scholar
  3. 3.
    Soldatov, D.V. 2004J. Incl. Phenom.483CrossRefGoogle Scholar
  4. 4.
    Soldatov, D.V., Lipkowski, J. 1995J. Struct. Chem.36979CrossRefGoogle Scholar
  5. 5.
    Soldatov, D.V., Ripmeester, J.A. 1998Supramol. Chem.9175CrossRefGoogle Scholar
  6. 6.
    Soldatov, D.V., Enright, G.D., Ripmeester, J.A., Lipkowski, J., Ukraintseva, E.A. 2001J. Supramol. Chem.1245CrossRefGoogle Scholar
  7. 7.
    Soldatov D.V., Dyadin Yu.A., Lipkowski J., Ogienko A.G. (1997). Mendeleev Commun. 11.Google Scholar
  8. 8.
    Dyadin, Yu.A., Soldatov, D.V., Logvinenko, V.A., Lipkowski, J. 1996J. Coord. Chem.3763CrossRefGoogle Scholar
  9. 9.
    Ukraintseva E.A., Soldatov D.V., Dyadin Yu.A., Logvinenko V.A., Grachev E.V. (1999). Mendeleev Commun. 123.Google Scholar
  10. 10.
    Ukraintseva, E.A., Soldatov, D.V., Dyadin, Yu.A. 2004J. Incl. Phenom.4819CrossRefGoogle Scholar
  11. 11.
    Cotton, F.A., Murillo, C.A., Xiaoping Wang, Yu.A. 1996Inorg. Chem. Acta245115CrossRefGoogle Scholar
  12. 12.
    Januszczyk M., Pietrzak J., and A. Stecki: Proc XXVII Meet. Pol. Phys. Soc. M. Curie-Sklodowska Univ., Lublin, Poland 109 (1981).Google Scholar
  13. 13.
    Hoser, A., Kaluski, Z., Januszczyk, M., Pietrzak, J., Glowiak, T. 1983Acta Crystallogr. Sect. C.391039CrossRefGoogle Scholar
  14. 14.
    Collins, R.K., Drew, M.G. 1972Inorg. Nucl. Chem. Lett.8975CrossRefGoogle Scholar
  15. 15.
    Lukehart, C.M., Troup, J.M. 1977Inorg. Chim. Acta2281CrossRefGoogle Scholar
  16. 16.
    Fischer R.A., Miehr A., Sussek H., Pritzkow H., Herdtweck E., Muller J., Ambacher O., Metzger T. (1996). Chem. Commun. 2685.Google Scholar
  17. 17.
    Troyanov, S.I., Yanovsky, A.I., Struchkov, Yu.T. 1995Koord. Khim.21332Google Scholar
  18. 18.
    Blanchard, S.S., Nicholson, T., Davison, A., Davis, W., Jones, A.G. 1996Inorg. Chim. Acta244121CrossRefGoogle Scholar
  19. 19.
    Brencic, J.V., Leban, I. 1980Z. Anorg. Allg. Chem.465173CrossRefGoogle Scholar
  20. 20.
    Brencic, J.V., Leban, I., Slokar, M. 1980Acta Crystallogr., Sect. B.36698CrossRefGoogle Scholar
  21. 21.
    Brencic, J.V., Leban, I.Z. 1978Anorg. Allg. Chem445251CrossRefGoogle Scholar
  22. 22.
    Logvinenko V.A., Paulik J., and F. Paulik: Kvaziravnovesnaja Termogravimetrija v Sovremennoj Neorganicheskoj Khimii, Nauka, Novosibirsk (1989).Google Scholar
  23. 23.
    A.V. Suvorov: Termodinamicheskaya khimiya paroobraznogo sostoyaniya. Tenzimetricheskiye issledovaniya geterogennykh ravnovesij, pp. 46–51. Khimiya, Leningrad (1970) (in Russian).Google Scholar
  24. 24.
    Lazarev, V.B., Greenberg, J.H., Popovkin, B.A. 1978Curr. Top. Mater. Sci1657Google Scholar
  25. 25.
    Ukraintseva, E.A., Dyadin, Yu.A., Kislykh, N.V., Logvinenko, V.A., Soldatov, D.V. 1995J. Incl. Phenom.2323CrossRefGoogle Scholar
  26. 26.
    Dyadin Yu.A., Kislykh N.V. (1991). Mendeleev Commun. 134.Google Scholar
  27. 27.
    Dyadin, Yu.A. 1996Russ. J. Coord. Chem22402Google Scholar
  28. 28.
    Logvinenko, V.A., Soldatov, D.V. 1999J. Thermal Anal.56485CrossRefGoogle Scholar
  29. 29.
    Zorkii, P.M., Razumaeva, A.E. 1979J. Struct. Chem.20819CrossRefGoogle Scholar
  30. 30.
    Soldatov, D.V., Kolesov, B.A., Lipkowski, J., Dyadin, Yu.A. 1997J. Struct. Chem.38463Google Scholar
  31. 31.
    Soldatov, D.V., Enright, G.D., Ripmeester, J.A., Lipkowski, J., Ukraintseva, E.A. 2001J. Supramol. Chem.1245CrossRefGoogle Scholar
  32. 32.
    Soldatov, D.V., Ukraintseva, E.A., Logvinenko, V.A., Dyadin, Yu.A., Grachev, E.V., Manakov, A.Yu. 2000Supr. Chem12237CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Andrew G. Ogienko
    • 1
  • Elissa A. Ukraintseva
    • 1
  • Tatyana A. Chingina
    • 1
  • Vladislav Yu. Komarov
    • 1
  • Andrey Yu. Manakov
    • 1
  1. 1.Nikolaev Institute of Inorganic Chemistry SB RASNovosibirskRussian Federation

Personalised recommendations