Molecular Recognition Thermodynamics of Steroids by Novel Oligo(aminoethylamino)-β-cyclodextrins Bearing Anthryl: Enhanced Molecular Binding Ability by Co-inclusion Complexation

  • Yu Liu
  • Yan-Li Zhao
  • En-Cui Yang
  • Heng-Yi Zhang


Three β-cyclodextrin (β-CD) derivatives bearing anthracene group (24) were synthesized by the condensation of 9-anthracenecarboxylic acid with the corresponding oligo(aminoethylamino)-β-CDs in 33–36% yields and their original conformations and binding behavior with steroid molecules were investigated by using spectroscopic techniques and isothermal calorimeter. The combination of induced circular dichroism (ICD) and 2D NMR spectra reveals that the anthryl group attached to β-CD is itself included in cavity and the chain length of oligo(aminoethylamino) decides the orientation of the anthryl located in the cavity to some extent, directly affecting the binding ability with guest molecules. Calorimetric titration has been performed at buffer aqueous solution (pH 7.2) at 25 °C to give the binding constants (K_S) and thermodynamic parameters for 11 inclusion complexation of modified β-CDs 24 and representative steroids, i.e., cholate, deoxycholate, glycocholate, and taurocholate. Possessing the sidearm with appropriate length, 3 gives the highest stability constant of 22485± 15 M−1 for the complexation with deoxycholate molecule, which may be ascribed to the co-inclusion interactions between the host and guest. As compared with parent β-CD 1 upon complexation with steroids, hosts 24 with different chain lengths enhanced the binding ability and significant molecular discrimination, which are discussed comparatively and globally from the viewpoint of thermodynamics. Furthermore, we establish the correlation between the conformation of the resulting complexes and the thermodynamic parameters obtained.


cyclodextrins molecular recognition steroids thermodynamics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Breslow, R., Dong, S.D. 1998Chem. Rev.9819972012Google Scholar
  2. 2.
    Rekharsky, M.V., Inoue, Y. 1998Chem. Rev.9818751917Google Scholar
  3. 3.
    Wenz, G. 1994Angew. Chem. Int. Ed.33803822Google Scholar
  4. 4.
    Khan, A.R., Forgo, P., Stine, K.J., D’Souza, V.T. 1998Chem. Rev.9819771996Google Scholar
  5. 5.
    (a) A. Ueno, T. Kuwabara, A. Nakamura, and F. Toda: Nature 356, 136–137 (1992); (b) T. Kuwabara, A. Nakamura, A. Ueno, and F. Toda: J. Phys. Chem. 98, 6297–6303 (1994); (c) H. Ikeda, M. Nakamura, N. Ise, N. Oguma, A. Nakamura, T. Ikeda, F.’Toda, and A. Ueno: J. Am. Chem. Soc. 118, 10980–10988 (1996).Google Scholar
  6. 6.
    (a) S.R. McAlpine and M.A. Garcia-Garibay: J. Am. Chem. Soc. 118, 2750–2751 (1996); (b) S.R. McAlpine and M. A. Garcia-Garibay: J. Am. Chem. Soc. 120, 4269–4275 (1998).Google Scholar
  7. 7.
    (a) Y. Liu, C.-C. You, T. Wada, and Y. Inoue: J. Org. Chem. 64, 3630–3634 (1999); (b) Y. Liu, B. Li, C.-C. You, T. Wada, and Y.’Inoue: J. Org. Chem. 66, 225–232 (2001); (c) Y. Liu, C.-C. You and B. Li: Chem. Eur. J. 7, 1281–1288 (2001).Google Scholar
  8. 8.
    Madrid, J.M., Villafruela, M., Serrano, R., Mendicuti, F. 1999J. Phys. Chem. B10348474853Google Scholar
  9. 9.
    Liu, Y., Han, B.-H., Li, B., Zhang, Y.-M., Zhao, P., Chen, Y.-T. 1998J. Org. Chem.6314441454Google Scholar
  10. 10.
    (a) M.V. Rekharsky and Y. Inoue: J. Am. Chem. Soc. 122, 4418–4435 (2000); (b) M.V. Rekharsky and Y. Inoue: J. Am. Chem. Soc. 122, 10949–10955 (2000).Google Scholar
  11. 11.
    Zhang, X.-Y., Gramlich, G., Wang, X.-J., Nau, W.M. 2002J. Am. Chem. Soc.124254263Google Scholar
  12. 12.
    (a) M.V. Rekharsky and Y. Inoue: J. Am. Chem. Soc. 124, 813–826 (2002); (b) M.V. Rekharsky and Y. Inoue: J. Am. Chem. Soc. 124, 12361–12371 (2002).Google Scholar
  13. 13.
    Liu, Y., Li, L., Li, X.-Y., Zhang, H.-Y., Wada, T., Inoue, Y. 2003J. Org. Chem.6836463657Google Scholar
  14. 14.
    Jong, R.M., Engbersen, J.F.J., Huskens, J., Reinhoudt, D.N. 2000Chem. Eur. J.640344040Google Scholar
  15. 15.
    McSkimming, G., Tucker, J.H.R., Bouas-Laurent, H., Desvergne, J.-P. 2000Angew. Chem., Int. Ed.3921672169Google Scholar
  16. 16.
    Nakamura, A., Inoue, Y. 2003J. Am. Chem. Soc.125966972Google Scholar
  17. 17.
    (a) C.V. Kumar and E.H. Asuncion: Chem. Commun. 470–472 (1992); (b) C.V. Kumar and E.H. Asuncion: J. Am. Chem. Soc. 115, 8547–8553 (1993).Google Scholar
  18. 18.
    Ikeda, T., Yoshida, K., Schneider, H.-J. 1995J. Am. Chem. Soc.11714531454Google Scholar
  19. 19.
    Agbaria, R.A., Butterfield, M.T., Warner, I.M. 1996J. Phys. Chem.1001713317137Google Scholar
  20. 20.
    Petter, R.C., Salek, J.S., Sikorski, C.T., Kumaravel, G., Lin, F.-T. 1990J. Am. Chem. Soc.11238603868Google Scholar
  21. 21.
    May, B.L., Kean, S.D., Easton, C.J., Lincoln, S.F. 1997J. Chem. Soc., Perkin. Trans.131573160Google Scholar
  22. 22.
    Harata, K., Uedaira, H. 1975Bull. Chem. Soc. Jpn.48375378Google Scholar
  23. 23.
    Connors, K.A. 1997Chem. Rev.9713251357Google Scholar
  24. 24.
    Kajtär, M., Horvath-Toro, C., Kuthi, E., Szejtli, J. 1982Acta Chim Acad Sci Hung110327355Google Scholar
  25. 25.
    (a) Z.J. Tan, X.X. Zhu, and G.R. Brown: Langmuir 10, 1034–1039 (1994); (b) C.T. Yim, X.X. Zhu, and G.R. Brown: J. Phys. Chem. B 103, 597–602 (1999).Google Scholar
  26. 26.
    Ollila, F., Pentikäinen, O.T., Forss, S., Johnson, M.S., Slotte, J.P. 2001Langmuir.1771077111Google Scholar
  27. 27.
    Cooper, A., Nutley, M.A., Camilleri, P. 1998Anal. Chem.7050245028Google Scholar
  28. 28.
    Singh, A.P., Cabrer, P.R., Alvarez-Parrilla, E., Meijide, F., Tato, J.V. 1999J. Incl. Phenom. Mol. Recognit. Chem.35335348Google Scholar
  29. 29.
    (a) Z. Yang and R. Breslow: Tetrahedron Lett. 38, 6171–6172 (1997); (b) J. Yang and R. Breslow: Angew. Chem., Int. Ed. 39, 2692–2694 (2000).Google Scholar
  30. 30.
    Bednarek, E., Bocian, W., Poznanski, J., Sitkowski, J., Sadlej-Sosnowska, N., Kozerski, L. 2002J. Chem. Soc., Perkin. Trans.29991004Google Scholar
  31. 31.
    Liu, Y., Song, Y., Wang, H., Zhang, H.-Y., Wada, T., Inoue, Y. 2003J. Org. Chem.6836873690Google Scholar
  32. 32.
    Cabrer, P.R., Alvarez-Parrilla, E., Meijide, F., Seijas, J.A., Nanez, E.R., Tato, J.V. 1999Langmuir.1554895495Google Scholar
  33. 33.
    (a) Y. Inoue, Y. Liu, L.-H. Tong, B.-J. Shen, and D.-S. Jin: J. Am. Chem. Soc. 115, 10637–10644 (1993); (b) Y. Inoue, T. Hakushi, Y. Liu, L.-H. Tong, B.-J. Shen, and D.-S. Jin: J. Am. Chem. Soc. 115, 475–481 (1993); (c) M.V. Rekharsky, M.P. Mayhew, R.N. Goldberg, P.D. Ross, Y. Yamashoji, and Y. Inoue: J. Phys. Chem. B 101, 87–100 (1997).Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Yu Liu
    • 1
  • Yan-Li Zhao
    • 1
  • En-Cui Yang
    • 1
  • Heng-Yi Zhang
    • 1
  1. 1.Department of Chemistry, State Key Laboratory of Elemento-Organic ChemistryNankai UniversityTianjinP.R. China

Personalised recommendations