Modular Neural Control for Gait Adaptation and Obstacle Avoidance of a Tailless Gecko Robot


In this study, we present a novel neural control architecture for gait adaptation and obstacle avoidance of a tailless gecko robot. The control architecture is based on a hierarchical modular structure, consisting of several neural layers and modules. The first layer contains three sensory preprocessing modules which filter sensory noise and generate appropriate descending commands to activate corresponding behaviors through the second and third layers. The second and third layers contain a central pattern generator (CPG) module and CPG postprocessing modules, respectively. The CPG module generates basic rhythmic locomotion patterns, shaped by the CPG postprocessing modules to achieve different gaits (i.e., wave, intermediate, and trot) as well as different climbing directions (i.e., forward and sideways). We use a body inclination sensor to adapt the robot gait while climbing on different slope angles, with infrared sensors to detect an obstacle on its climbing path and activate obstacle avoidance behavior. We successfully tested our control approach on a real tailless gecko robot. As a result, the robot can efficiently climb forward on different slope angles (including 90) and automatically adapt its climbing gait accordingly, to maximize climbing speed and ensure stability. It can also avoid an obstacle by changing its climbing direction from forward to sideways.

This is a preview of subscription content, access via your institution.


  1. 1.

    Seibel, A., Schiller, L.: Systematic engineering design helps creating new soft machines. Robotics and Biomimetics 5(1), 5 (2018)

    Article  Google Scholar 

  2. 2.

    Schiller, L., Seibel, A., Schlattmann, J.: Toward a gecko-inspired, climbing soft robot. Front. Neurorobot. 13, 106 (2019)

    Article  Google Scholar 

  3. 3.

    Srisuchinnawong, A., Shao, D., Ngamkajornwiwat, P., Teerakittikul, P., Dai, Z., Ji, A., Manoonpong, P.: Neural control for gait generation and adaptation of a gecko robot. In: 2019 19th International Conference on Advanced Robotics (ICAR), pp. 468–473. IEEE (2019)

  4. 4.

    Gorb, S., Varenberg, M., Peressadko, A., Tuma, J.: Biomimetic mushroom-shaped fibrillar adhesive microstructure. J. R. Soc. Interface 4(13), 271–275 (2007)

    Article  Google Scholar 

  5. 5.

    Autumn, K., Gravish, N.: Gecko adhesion: evolutionary nanotechnology. Philos. Trans. Royal Soc. A: Math. Phys. Eng. Sci. 366(1870), 1575–1590 (2008)

    Article  Google Scholar 

  6. 6.

    Wang, Z., Wang, Z., Dai, Z., Gorb, S.N.: Bio-inspired adhesive footpad for legged robot climbing under reduced gravity: multiple toes facilitate stable attachment. Appl. Sci. 8(1), 114 (2018)

    Article  Google Scholar 

  7. 7.

    Raut, H.K., Baji, A., Hariri, H.H., Parveen, H., Soh, G.S., Low, H.Y., Wood, K.L.: Gecko-inspired dry adhesive based on micro–nanoscale hierarchical arrays for application in climbing devices. ACS Appl. Mater. Interfaces 10(1), 1288–1296 (2018)

    Article  Google Scholar 

  8. 8.

    Autumn, K., Hsieh, S., Dudek, D., Chen, J., Chitaphan, C., Full, R.: Dynamics of geckos running vertically. J. Exp. Biol. 209(2), 260–272 (2006)

    Article  Google Scholar 

  9. 9.

    Chen, R.: A gecko-inspired electroadhesive wall-climbing robot. IEEE Potentials 34(2), 15–19 (2015)

    Article  Google Scholar 

  10. 10.

    Daltorio, K.A., Gorb, S., Peressadko, A., Horchler, A.D., Ritzmann, R.E., Quinn, R.D.: A robot that climbs walls using micro-structured polymer feet. In: Climbing and Walking Robots, pp. 131–138. Springer (2006)

  11. 11.

    Chen, R., Fu, L., Qiu, Y., Song, R., Jin, Y.: A gecko-inspired wall-climbing robot based on vibration suction mechanism. Proc. Inst. Mech. Eng. C. J. Mech. Eng. Sci. 233(19-20), 7132–7143 (2019)

    Article  Google Scholar 

  12. 12.

    Yu, Z., Wang, Z., Liu, R., Wang, P., Dai, Z.: Stable gait planning for a gecko-inspired robot to climb on vertical surface. In: 2013 IEEE International Conference on Mechatronics and Automation, pp. 307–311. IEEE (2013)

  13. 13.

    Medger, K., Verburgt, L., Bateman, P.W.: The influence of tail autotomy on the escape response of the cape dwarf gecko, lygodactylus capensis. Ethology 114(1), 42–52 (2008)

    Article  Google Scholar 

  14. 14.

    Unver, O., Uneri, A., Aydemir, A., Sitti, M.: Geckobot: A gecko inspired climbing robot using elastomer adhesives. In: Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006, pp. 2329–2335. IEEE (2006)

  15. 15.

    Rossignol, S., Dubuc, R., Gossard, J.P.: Dynamic sensorimotor interactions in locomotion. Physiol. Rev. 86(1), 89–154 (2006)

    Article  Google Scholar 

  16. 16.

    Manoonpong, P., Pasemann, F., Roth, H.: Modular reactive neurocontrol for biologically inspired walking machines. Int. J. Rob. Res. 26(3), 301–331 (2007)

    Article  Google Scholar 

  17. 17.

    Ijspeert, A.J.: Central pattern generators for locomotion control in animals and robots: a review. Neural Netw. 21(4), 642–653 (2008)

    Article  Google Scholar 

  18. 18.

    Manoonpong, P., Parlitz, U., Wörgötter, F.: Neural control and adaptive neural forward models for insect-like, energy-efficient, and adaptable locomotion of walking machines. Front. Neural Circuits 7, 12 (2013)

    Article  Google Scholar 

  19. 19.

    Leung, B., Thor, M., Manoonpong, P.: Modular neural control for bio-inspired walking and ball rolling of a dung beetle-like robot. In: Artificial Life Conference Proceedings, pp. 335–342. MIT Press (2018)

  20. 20.

    Sun, T., Shao, D., Dai, Z., Manoonpong, P.: Adaptive neural control for self-organized locomotion and obstacle negotiation of quadruped robots. In: 2018 27th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), pp. 1081–1086. IEEE (2018)

  21. 21.

    Broomhead, D., Lowe, D.: Radial basis functions, multi-variable functional interpolation and adaptive networks. Royal signals and radar establishment; 1988. report no. Ann. Stat. 26(3), 801–849 (1998)

    Article  Google Scholar 

  22. 22.

    Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Comput. 3(2), 246–257 (1991)

    Article  Google Scholar 

  23. 23.

    Pitchai, M., Xiong, X., Thor, M., Billeschou, P., Mailänder, P.L., Leung, B., Kulvicius, T., Manoonpong, P.: Cpg driven rbf network control with reinforcement learning for gait optimization of a dung beetle-like robot. In: International Conference on Artificial Neural Networks, pp. 698–710. Springer (2019)

  24. 24.

    Stone, G.O.: An analysis of the delta rule and the learning of statistical associations. Parallel Distributed Processing: Explorations in the Microstructure of Cognition 1, 444–459 (1986)

    Google Scholar 

  25. 25.

    Ganguli, S., Huh, D., Sompolinsky, H.: Memory traces in dynamical systems. Proc. Natl. Acad. Sci. 105(48), 18970–18975 (2008)

    Article  Google Scholar 

  26. 26.

    Goldschmidt, D., Wörgötter, F., Manoonpong, P.: Biologically-inspired adaptive obstacle negotiation behavior of hexapod robots. Front. Neurorobot. 8, 3 (2014)

    Article  Google Scholar 

  27. 27.

    Manoonpong, P., Pasemann, F., Wörgötter, F.: Sensor-driven neural control for omnidirectional locomotion and versatile reactive behaviors of walking machines. Robot. Auton. Syst. 56(3), 265–288 (2008)

    Article  Google Scholar 

  28. 28.

    Lin, H.W., Tegmark, M., Rolnick, D.: Why does deep and cheap learning work so well? J. Stat. Phys. 168(6), 1223–1247 (2017)

    MathSciNet  Article  Google Scholar 

  29. 29.

    Ji, A., Zhao, Z., Manoonpong, P., Wang, W., Chen, G., Dai, Z.: A bio-inspired climbing robot with flexible pads and claws. J. Bionic Eng. 15(2), 368–378 (2018)

    Article  Google Scholar 

  30. 30.

    Sun, T., Xiong, X., Dai, Z., Manoonpong, P.: Small-sized reconfigurable quadruped robot with multiple sensory feedback for studying adaptive and versatile behaviors. Front. Neurorobot. 14, 14 (2020)

    Article  Google Scholar 

  31. 31.

    Xiong, X., Manoonpong, P.: Adaptive motor control for human-like spatial-temporal adaptation. In: 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 2107–2112. IEEE (2018)

  32. 32.

    Thor, M., Kulvicius, T., Manoonpong, P.: Generic neural locomotion control framework for legged robots. IEEE Transactions on Neural Networks and Learning Systems. (2020)

Download references


This work was supported by the NSFC-DFG Collaborative Research Program of the National Natural Science of Foundation of China under Grant 51861135306, the NUAA Research Fund, and in part from the startup grant on Bio-inspired Robotics provided by Vidyasirimedhi Institute of Science and Technology (VISTEC).

Author information



Corresponding author

Correspondence to Poramate Manoonpong.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A. Srisuchinnawong and B. Wang contributed equally to this work

Electronic supplementary material

Below is the link to the electronic supplementary material.

(MP4 92.1 MB)

(MP4 123 MB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Srisuchinnawong, A., Wang, B., Shao, D. et al. Modular Neural Control for Gait Adaptation and Obstacle Avoidance of a Tailless Gecko Robot. J Intell Robot Syst 101, 27 (2021).

Download citation


  • Gecko robot
  • Climbing robot
  • Robot locomotion
  • Neural control
  • Gait adaptation
  • Obstacle avoidance