A New Parcel Delivery System with Drones and a Public Train


In this paper, we propose a new parcel delivery system consisting of a public train and drones. The train, an already existing mobile platform in our neighbourhood, follows its normal predefined route and timetable to transport passengers. In the meanwhile, some parcels to be delivered to some customers and a delivery drone are stored on its roof. The drone can launch from the train, deliver the parcel to a customer, and return to the train. It can also travel with the train and replace its battery on the roof via an automatic battery swap system. As the parcel delivery system cannot manage the movement of the train, the route and the timetable of the train need to be accounted carefully to schedule the deliveries. We formulate an optimization problem to minimize the total delivery time of a given set of parcels, and we propose two algorithms. Though the exact algorithm gives the optimal schedule, its computational complexity is exponential to the number of parcels. To make the proposed system possible to be implemented in practice, a suboptimal algorithm is developed, which is more efficient than the exact algorithm and can achieve close performance with the exact algorithm. Additionally, we propose a simple but effective strategy to deal with the uncertainty associated with the train’s timetable. Moreover, the proposed algorithm for the single drone case is modified to deal with the multiple drone case. The effectiveness of the proposed algorithms is verified via computer simulations and comparison with existing methods. The results show that the presented approach is more cost-efficient than the Truck only scheme and the Truck plus Drone scheme. Moreover, the parcel delivery time can be reduced and the delivery area can be enlarged compared to the scheme using drones only.

This is a preview of subscription content, log in to check access.


  1. 1.

    Agatz, N., Bouman, P., Schmidt, M.: Optimization approaches for the traveling salesman problem with drone. Transportation Science (2018)

  2. 2.

    Amazon: Amazon prime air. Accessed 07 Jan. 2020. Online: https://en.wikipedia.org/wiki/Amazon_Prime_Air (2019)

  3. 3.

    Applegate, D.L., Bixby, R.E., Chvatal, V., Cook, W.J.: The traveling salesman problem: a computational study. Princeton university press (2006)

  4. 4.

    Dorling, K., Heinrichs, J., Messier, G.G., Magierowski, S.: Vehicle routing problems for drone delivery. IEEE Transactions on Systems, Man, and Cybernetics: Systems 47(1), 70–85 (2017)

    Article  Google Scholar 

  5. 5.

    Ghommam, J., Saad, M.: Autonomous landing of a quadrotor on a moving platform. IEEE Trans. Aerosp. Electron. Syst. 53(3), 1504–1519 (2017)

    Article  Google Scholar 

  6. 6.

    Google Project Wing: Transforming the way goods are transported. Accessed 8 Nov. 2019. Online: https://x.company/projects/wing/ (2019)

  7. 7.

    Ha, Q.M., Deville, Y., Pham, Q.D., Hà, M.H.: On the min-cost traveling salesman problem with drone. Transportation Research Part C: Emerging Technologies 86, 597–621 (2018)

    Article  Google Scholar 

  8. 8.

    Hong, I., Kuby, M., Murray, A.T.: A range-restricted recharging station coverage model for drone delivery service planning. Transportation Research Part C: Emerging Technologies 90, 198–212 (2018)

    Article  Google Scholar 

  9. 9.

    Huang, H., Savkin, A.V.: Towards the internet of flying robots: a survey. Sensors 18(11), 4038 (2018)

    Article  Google Scholar 

  10. 10.

    Huang, H., Savkin, A.V.: A method of optimized deployment of charging stations for drone delivery. IEEE Transactions on Transportation Electrification, pp 1–9. https://doi.org/10.1109/TTE.2020.2988149 (2020)

  11. 11.

    Huang, H., Savkin, A.V., Huang, C.: I-UMDPC: the improved-unusual message delivery path construction for wireless sensor networks with mobile sinks. IEEE Internet of Things Journal 4(5), 1528–1536 (2017)

    Article  Google Scholar 

  12. 12.

    Huang, H.., Savkin, A.V., Din, g.M., Kaafar, M.A.: Optimized deployment of drone base station to improve user experience in cellular networks. Journal of Network and Computer Applications 144, 49–58 (2019)

    Article  Google Scholar 

  13. 13.

    Huang, H., Savkin, A.V., Huang, C.: Control of a Novel Parcel Delivery System Consisting of a UAV and a Public Train. In: 2019 IEEE 17Th International Conference on Industrial Informatics (INDIN), IEEE, pp 1047–1050 (2019)

  14. 14.

    Huang, H., Savkin, A.V., Huang, C.: Optimal control of a hybrid UAV/train parcel delivery system. In: 38th Chinese Control Conference (CCC), pp 6606–6609 (2019)

  15. 15.

    Huang, H., Savkin, A.V., Huang, C.: Reliable path planning for drone delivery using a stochastic time-dependent public transportation network. IEEE Trans. Intell. Transp. Syst., pp 1–10. https://doi.org/10.1109/TITS.2020.2983491 (2020)

  16. 16.

    Ivanov, M., Sergiyenko, O., Tyrsa, V., Mercorelli, P., Kartashov, V., Hernandez, W., Sheiko, S., Kolendovska, M.: Individual scans fusion in virtual knowledge base for navigation of mobile robotic group with 3D TVS. In: 44th Annual Conference of the IEEE Industrial Electronics Society, pp 3187–3192 (2018)

  17. 17.

    Kim, S., Moon, I.: Traveling salesman problem with a drone station. IEEE Transactions on Systems, Man, and Cybernetics: Systems (2018)

  18. 18.

    Kim, S.J., Lim, G.J., Cho, J., Côté, M.J.: Drone-aided healthcare services for patients with chronic diseases in rural areas. Journal of Intelligent & Robotic Systems 88(1), 163–180 (2017)

    Article  Google Scholar 

  19. 19.

    Kitjacharoenchai, P., Ventresca, M., Moshref-Javadi, M., Lee, S., Tanchoco, J.M., Brunese, P.A.: Multiple traveling salesman problem with drones: Mathematical model and heuristic approach. Computers & Industrial Engineering 129, 14–30 (2019)

    Article  Google Scholar 

  20. 20.

    Laporte, G., Mercure, H., Nobert, Y.: Generalized travelling salesman problem through n sets of nodes: the asymmetrical case. Discret. Appl. Math. 18(2), 185–197 (1987)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Mathew, N., Smith, S.L., Waslander, S.L.: Planning paths for package delivery in heterogeneous multirobot teams. IEEE Trans. Autom. Sci. Eng. 12(4), 1298–1308 (2015)

    Article  Google Scholar 

  22. 22.

    Murray, C.C., Chu, A.G.: The flying sidekick traveling salesman problem: Optimization of drone-assisted parcel delivery. Transportation Research Part C: Emerging Technologies 54, 86–109 (2015)

    Article  Google Scholar 

  23. 23.

    Murray, C.C., Raj, R.: The multiple flying sidekicks traveling salesman problem: Parcel delivery with multiple drones. Available at SSRN 3338436 (2019)

  24. 24.

    Muskardin, T., Balmer, G., Wlach, S., Kondak, K., Laiacker, M., Ollero, A.: Landing of a fixed-wing UAV on a mobile ground vehicle. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp 1237–1242 (2016)

  25. 25.

    Rodriguez-Ramos, A., Sampedro, C., Bavle, H., De La Puente, P., Campoy, P.: A deep reinforcement learning strategy for UAV autonomous landing on a moving platform. Journal of Intelligent & Robotic Systems 93(1-2), 351–366 (2019)

    Article  Google Scholar 

  26. 26.

    Sanchez, L., Muñoz, L., Galache, J.A., Sotres, P., Santana, J.R., Gutierrez, V., Ramdhany, R., Gluhak, A., Krco, S., Theodoridis, E., et al.: Smartsantander: IoT experimentation over a smart city testbed. Comput. Netw. 61, 217–238 (2014)

    Article  Google Scholar 

  27. 27.

    Saulwick, J.: Smaller stations are biggest losers in new rail timetable. Accessed 07 Jan. 2020. Online:https://www.smh.com.au/national/nsw/smaller-stations-are-biggest-losers-in-new-rail-timetable-20130723-2qhco.html (2013)

  28. 28.

    Savkin, A.V., Huang, H.: Deployment of unmanned aerial vehicle base stations for optimal quality of coverage. IEEE Wireless Communications Letters 8(1), 321–324 (2019)

    Article  Google Scholar 

  29. 29.

    Sergiyenko, O., Kartashov, V., Ivanov, M., Hernández-Balbuena, D., Tyrsa, V., Nieto-Hipólito, J.I.: Transferring model in robotic group. In: IEEE 25th International Symposium on Industrial Electronics (ISIE), pp 946–952 (2016)

  30. 30.

    Sharma, V., Srinivasan, K., Chao, H.C., Hua, K.L., Cheng, W.H.: Intelligent deployment of UAVs in 5G heterogeneous communication environment for improved coverage. J. Netw. Comput. Appl. 85, 94–105 (2017)

    Article  Google Scholar 

  31. 31.

    Shavarani, S.M., Nejad, M.G., Rismanchian, F., Izbirak, G.: Application of hierarchical facility location problem for optimization of a drone delivery system: a case study of amazon prime air in the city of San Francisco. The International Journal of Advanced Manufacturing Technology 95(9-12), 3141–3153 (2018)

    Article  Google Scholar 

  32. 32.

    Smith, C.: Amazon’s delivery drones could make 30-minute deliveries a reality (and for a $1 fee). Accessed 24 Jan. 2020. Online: https://read.bi/2WbQGeF (2015)

  33. 33.

    Sundar, K., Rathinam, S.: Algorithms for routing an unmanned aerial vehicle in the presence of refueling depots. IEEE Trans. Autom. Sci. Eng. 11(1), 287–294 (2014)

    Article  Google Scholar 

  34. 34.

    Suzuki, K.A., Kemper Filho, P., Morrison, J.R.: Automatic battery replacement system for UAVs: Analysis and design. Journal of Intelligent & Robotic Systems 65(1-4), 563–586 (2012)

    Article  Google Scholar 

  35. 35.

    Trotta, A., Andreagiovanni, F.D., Di Felice, M., Natalizio, E., Chowdhury, K.R.: When UAVs ride a bus: Towards energy-efficient city-scale video surveillance. In: IEEE Conference on Computer Communications, IEEE, pp 1043–1051 (2018)

  36. 36.

    Villa, D.K., Brandão, A.S., Sarcinelli-Filho, M.: A survey on load transportation using multirotor UAVs. Journal of Intelligent & Robotic Systems 98, 267–296 (2020)

    Article  Google Scholar 

  37. 37.

    Zhao, M., Chow, T.W.S., Tsang, K.F.: Vehicle route planning for logistics network optimization via multiple spanning tree. In: IEEE 14th International Conference on Industrial Informatics (INDIN), pp 800–805 (2016)

  38. 38.

    Zhou, Z., Zhang, C., Xu, C., Xiong, F., Zhang, Y., Umer, T.: Energy-efficient industrial internet of UAVs for power line inspection in smart grid. IEEE Transactions on Industrial Informatics 14(6), 2705–2714 (2018)

    Article  Google Scholar 

  39. 39.

    Zorbas, D., Pugliese, L.D.P., Razafindralambo, T., Guerriero, F.: Optimal drone placement and cost-efficient target coverage. J. Netw. Comput. Appl. 75, 16–31 (2016)

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Hailong Huang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by Australian Research Council.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Savkin, A.V. & Huang, C. A New Parcel Delivery System with Drones and a Public Train. J Intell Robot Syst (2020). https://doi.org/10.1007/s10846-020-01223-y

Download citation


  • Unmanned aerial vehicles
  • Drones
  • Parcel delivery
  • Generalized travelling salesman problem