2D Underwater Obstacle Avoidance Control Algorithm Based on IB-LBM and APF Method for a Multi-Joint Snake-Like Robot

Abstract

In order to study the rapidity and stability of multi-joint snake-like robots in underwater obstacle avoidance, a new underwater obstacle avoidance control algorithm for multi-joint snake-like robots based on the combination of IB-LBM (Immersed Boundary-Lattice Boltzmann Method) and APF (Artificial Potential Field) is proposed in this paper. Firstly, the IB-LBM is used to establish the non-linear flow field model and the fluid-structure coupling model of a multi-joint snake-like robot. Secondly, the 2-D Serpentine curve equation of motions of a multi-joint snake-like robot is improved, and APF method is added to each joint of the robot to control its motion direction, so as to achieve effective obstacle avoidance of the robot in the flow field. Then by MATLAB simulation experiment, influences of different control parameters on obstacle avoidance performance of a multi-joint snake-like robot are analyzed, and the best parameters suitable for obstacle avoidance of a robot are found to improve the rapidity and stability of the whole system. Finally, an underwater obstacle avoidance experiment of a multi-joint snake-like robot is carried out to verify the effectiveness of the proposed control algorithm in real environment.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Pietrowska, Z., Tchon, K.: Dynamics and motion planning of trident snake robot. J Intell Robot Syst. 75(1), 17–28 (2014)

    Article  Google Scholar 

  2. 2.

    Belter, D., Wietrzykowski, J., Skrzypczynski, P.: Employing natural terrain semantics in motion planning for a multi-legged robot. J Intell Robot Syst. 93(3–4), 723–743 (2019)

    Article  Google Scholar 

  3. 3.

    Wei, W., Zhiyong, Y., Lei, G., et al.: Gait planning of a scale-driven snake-like robot for winding and obstacle crossing. Adv Mech Eng. 9(11), 727–742 (2017)

    Google Scholar 

  4. 4.

    Pajak, I.: Real-time trajectory generation methods for cooperating mobile manipulators subject to state and control constraints. J. Intell. Robot. Syst. 93(3–4), 649–668 (2019)

    Article  Google Scholar 

  5. 5.

    Kozlowski, K.: Special issue: robot motion and control. J. Intell. Robot. Syst. 93(3–4), 617–619 (2019)

    Article  Google Scholar 

  6. 6.

    Tian, F.-B., Luo, H., Zhu, L., et al.: An efficient immersed boundary-lattice Boltzmann method for the hydrodynamic interaction of elastic filaments. J. Comput. Phys. 230(19), 7266–7283 (2011)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Wenbai, C., Xibao, W., Yang, L.: An improved path planning method based on artificial potential field for a mobile robot. Cybernetics and Information Technologies. 15(2), 181–191 (2015)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Weerakoon T, Ishii K, Nassiraei A A F: Dead-lock free mobile robot navigation using modified artificial potential field. International Conference on Soft Computing and Intelligent Systems (SCIS) and 15th International Symposium on Advanced Intelligent Systems (ISIS). (2014)

  9. 9.

    Clemente, E., Meza-sanchez, M., Bugarin, E., et al.: Adaptive behaviors in autonomous navigation with collision avoidance and bounded velocity of an omnidirectional mobile robot. J. Intell. Robot. Syst. 92(2), 359–380 (2018)

    Article  Google Scholar 

  10. 10.

    Sobreira, H., Costa, C.M., Sousa, I., et al.: Map-matching algorithms for robot self-localization: a comparison between perfect match, iterative closest point and normal distributions transform. J. Intell. Robot. Syst. 93(3–4), 533–546 (2019)

    Article  Google Scholar 

  11. 11.

    Toman J, Olszewska J I: Algorithm for graph building based on google maps and google earth. International Symposium on Computational Intelligence and Informatics (CINTI). 19–21 Nov 2014

  12. 12.

    Bayat, B., Bermejo-alonso, J., Carbonera, J., et al.: Requirements for building an ontology for autonomous robots. Ind. Robot. 43(5), 469–480 (2016)

    Article  Google Scholar 

  13. 13.

    Gowda, I., Kirkpatrick, D., Lee, D., et al.: Dynamic voronoi diagrams. IEEE Trans. Inf. Theory. 29(5), 724–731 (1983)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Pulakka, K., Kujanpaa, V.: Rough level path planning method for a robot using SOFM neural network. Robotica. 16, 415–423 (1998)

    Article  Google Scholar 

  15. 15.

    Khatib O: Real-time obstacle avoidance for manipulators and mobile robots. IEEE International Conference on Robotics and Automation. 25–28 March 1985

  16. 16.

    Jovanovic, R., Tuba, M., Voss, S.: An efficient ant colony optimization algorithm for the blocks relocation problem. Eur. J. Oper. Res. 274(1), 78–90 (2019)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Jorg, K.W., Berg, M.: Sophisticated mobile robot sonar sensing with pseudo-random codes. Robot Auton Syst. 25(3–4), 241–251 (1998)

    Article  Google Scholar 

  18. 18.

    Komura, H., Yamada, H., Hirose, S.: Development of snake-like robot ACM-R8 with large and mono-tread wheel. Adv Robot. 29(17), 1081–1094 (2015)

    Article  Google Scholar 

  19. 19.

    Ohashi T, Yamada H, Hirose S: Loop forming snake-like robot ACM-R7 and its serpenoid oval control. International Conference on Intelligent Robots and Systems, F 18–22 Oct. 2010

  20. 20.

    Saunders, J.W., Schempf, H., Dwivedi, S.N., et al.: Deflection characteristics of some special configurations of snake-type robots. J Intell Robot Syst. 12(2), 145–153 (1995)

    Article  Google Scholar 

  21. 21.

    Pransky, J., Choset, H.: The Pransky interview: Dr Howie Choset, CTO, advanced robotics for manufacturing institute; professor, Carnegie Mellon; snake robotics inventor and entrepreneur. Ind Robot. 44(5), 571–574 (2017)

  22. 22.

    Wei, Q., Xu, Y.Q., Tang, X.Y., et al.: An IB-LBM study of continuous cell sorting in deterministic lateral displacement arrays. Acta Mech. Sinica. 32(6), 1023–1030 (2016)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Chen, T., Zhang, Q.: Robot Motion Planning Based on Improved Artificial Potential Field. International Conference on Computer Science and Network Technology, Dalian (2014)

    Google Scholar 

  24. 24.

    Yuan, Q.X., Xiao, Y.T., Fang, B.T., et al.: IB-LBM simulation of the haemocyte dynamics in a stenotic capillary. Comput Methods Biomech Biomed Engin. 17(9), 978–985 (2014)

    Article  Google Scholar 

  25. 25.

    Peskin, C.S.: The immersed boundary method. Acta Numerica. 11, 479–517 (2003)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Xu, Y.Q., Tian, F.B., Deng, Y.L.: An efficient red blood cell model in the frame of ib-lbm and its application. Int. J. Biomath. 06(01), 1250061 (2012)

    MathSciNet  Article  Google Scholar 

  27. 27.

    Guo, Z., Shi, B., Wang, N.: Lattice BGK model for incompressible Navier–stokes equation. J. Comput. Phys. 165(1), 288–306 (2000)

    MathSciNet  Article  Google Scholar 

  28. 28.

    Hirose, S., Yamada, H.: Snake-like robots machine design of biologically inspired robots. IEEE Robot Autom Mag. 16(1), 88–98 (2009)

    Article  Google Scholar 

  29. 29.

    Yamada H, Hirose S: Study on the 3D shape of active cord mechanism. IEEE International Conference on Robotics and Automation. F 15–19 May 2006

  30. 30.

    Montiel, O., Sepulveda, R., Orozco-rosas, U.: Optimal path planning generation for mobile robots using parallel evolutionary artificial potential field. J. Intell. Robot. Syst. 79(2), 237–257 (2015)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hongbin Deng.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, D., Pan, ., Deng, H. et al. 2D Underwater Obstacle Avoidance Control Algorithm Based on IB-LBM and APF Method for a Multi-Joint Snake-Like Robot. J Intell Robot Syst 98, 771–790 (2020). https://doi.org/10.1007/s10846-019-01097-9

Download citation

Keywords

  • Snake-like robot
  • IB-LBM
  • APF
  • Obstacle avoidance