Guidance Based Lane-Changing Control in High-Speed Vehicle for the Overtaking Maneuver


Vehicle lane-changing and overtaking are fundamental technology in autonomous driving. This paper proposes an approach that combines guidance navigation and image based visual detection for road following and overtaking maneuver. Two critical issues are considered: Firstly, it is suggested to design a robust constrained road following based line of sight guidance in the presence of unknown time-varying sideslip angle and under unknown dynamic model. Secondly, to trigger the autonomous overtaking manoeuvre. An overtaking procedure is defined as a high-priority task while the road following as a low-priority task. The objective is then to properly switching between the two guidance modes according to the camera vision reading. The adopted control strategy consists of a constrained along and cross-track control law and a nonlinear RISE control law. The closed-loop dynamics of both kinematic errors and the dynamical errors are analyzed in detail using nonlinear interconnected systems theory and the overall system is shown to be input to state stable (ISS). The proposed approach for road following and overtaking are validated in simulations.

This is a preview of subscription content, access via your institution.


  1. 1.

    Osman, K., Ghommam, J., Mehrjerdi, H., Saad, M.: Vision-based curved lane keeping control for intelligent vehicle highway system. Proceedings of the Institution of Mechanical Engineers, Part I:, Journal of Systems and Control Engineering, 1–19 (2018)

  2. 2.

    Cherubini, A., Chaumette, F., Oriolo, G.: Visual servoing for path reaching with nonholonomic robots. Robotica 29, 1037–1048 (2011)

    Article  Google Scholar 

  3. 3.

    Shin, T.Y., Kim, S.Y., Choi, J.Y., Yoon, K.S., Lee, M.H.: Modified lateral control of an autonomous vehicle by look-ahead and look-down sensing. Int. J. Automot. Technol. 12(1), 103–110 (2011)

    Article  Google Scholar 

  4. 4.

    Gámez Serna, C., Ruichek, Y.: Dynamic speed adaptation for path tracking based on curvature information and speed limits. Sensors 17(6), 1–22 (2017)

    Article  Google Scholar 

  5. 5.

    Ferrara, A., Vecchio, C.: Second order sliding mode control of vehicles with distributed collision avoidance capabilities. Mechatronics 19(4), 471–477 (2009)

    Article  Google Scholar 

  6. 6.

    Yi, S., Wang, J., Li, B.: Composite backstepping control with finite-time convergence. Optik-Int. J. Light Electron Opt. 142, 260–272 (2017)

    Article  Google Scholar 

  7. 7.

    Huang, Y., Han, J.: Analysis and design for the second order nonlinear continuous extended states observer. Chinese Sci. Bull. 45(21), 1938 (2000)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Han, J.: Active Disturbance Rejection Control Technique-the Technique for Estimating and Compensating the Uncertainties, pp 197–270. National Defense Industry Press, Beijing (2008)

    Google Scholar 

  9. 9.

    Krstic, M., Kanellakopoulos, I., Kokotovic, P.V.: Nonlinear and Adaptive Control Design, vol. 222, pp 490–491. Wiley, New York (1995)

    Google Scholar 

  10. 10.

    Lekkas, A.M., Fossen, T.I.: Integral LOS path following for curved paths based on a monotone cubic Hermite spline parametrization. IEEE Trans. Control Syst. Technol. 22(6), 2287–2301 (2014)

    Article  Google Scholar 

  11. 11.

    Patre, P.M., MacKunis, W., Kaiser, K., Dixon, W.E.: Asymptotic tracking for uncertain dynamic systems via a multilayer neural network feedforward and RISE feedback control structure. IEEE Trans. Autom. Control 53 (9), 2180 (2008)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Pomet, J.B., Praly, L.: Adaptive nonlinear regulation: Estimation from the Lyapunov equation. IEEE Trans. Autom. Control 37(6), 729–740 (1992)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Moe, S., Antonelli, G., Teel, A.R., Pettersen, K.Y., Schrimpf, J.: Set-based tasks within the singularity-robust multiple task-priority inverse kinematics framework: General formulation, stability analysis, and experimental results. Front. Robot. AI 3, 16 (2016)

    Article  Google Scholar 

  14. 14.

    Harris, C., Stephens, M.: A combined corner and edge detector. In: Proc. of Fourth Alvey Vision Conference, pp. 147–151 (1988)

  15. 15.

    Milanés, V., Llorca, D.F., Villagrá, J., Pérez, J., Fernández, C., Parra, I., Sotelo, M.A.: Intelligent automatic overtaking system using vision for vehicle detection. Expert Syst. Appl. 39(3), 3362–3373 (2012)

    Article  Google Scholar 

  16. 16.

    Rad, A.G., Dehghani, A., Karim, M.R.: Vehicle speed detection in video image sequences using CVS method. Int. J. Phys. Sci. 5(17), 2555–2563 (2010)

    Google Scholar 

  17. 17.

    Zhang, F., Gonzales, J., Li, S.E., Borrelli, F., Li, K.: Drift control for cornering maneuver of autonomous vehicles. Mechatronics 54, 167–174 (2018)

    Article  Google Scholar 

  18. 18.

    Zhang, Y.: A Safety and Comfort Lane Change for Sportive Highly Automated Driving Truck. University of TuDelft, Master thesis (2016)

    Google Scholar 

  19. 19.

    Sun, Z., Bebis, G., Miller, R.: On-road vehicle detection using optical sensors: A review. In: Proc. 7th International IEEE Conference on Intelligent Transportation Systems, pp. 585–590. Washington (2004)

  20. 20.

    Wang, J., Bebis, G., Miller, R.: Overtaking vehicle detection using dynamic and quasi-static background modeling. In: Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Workshops. San Diego (2005)

  21. 21.

    Alonso, J.D., Vidal, E.R., Rotter, A., Muhlenberg, M.: Lane-change decision aid system based on motion-driven vehicle tracking. IEEE Trans. Veh. Technol. 57(5), 2736–2746 (2008)

    Article  Google Scholar 

  22. 22.

    Jin, X.: Fault tolerant finite-time leader–follower formation control for autonomous surface vessels with LOS range and angle constraints. Automatica 68, 228–236 (2016)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Khalil, H.K., Grizzle, J.W.: Nonlinear Systems, vol. 3. Upper Saddle River, Prentice Hall (2002)

    Google Scholar 

  24. 24.

    Garcia, F., Cerri, P., Broggi, A., de la Escalera, A., Armingol, J.M.: Data fusion for overtaking vehicle detection based on radar and optical flow. In: Proc. IEEE conference on Intelligent Vehicles Symposium, pp. 494–499. Alcala de Henares (2012)

  25. 25.

    Wu, L.T., Lin, H.Y.: Overtaking vehicle detection techniques based on optical flow and convolutional neural network. In: Proc. International Conference on Vehicle Technology and Intelligent Transport Systems, pp. 133–140 (2018)

  26. 26.

    Mo, C., Li, Y., Zheng, L.: Simulation and analysis on overtaking safety assistance system based on vehicle-to-vehicle communication. Autom. Innov. 1(2), 158–166 (2018)

    Article  Google Scholar 

  27. 27.

    Wu, Y., Wang, L., Li, F.: A robust path tracking control method for intelligent vehicle (No. 2018-01-1582). SAE Technical Paper (2018)

  28. 28.

    You, F, Wang, R, Ronghui, Z, Xiong, W: Lane changing and overtaking control method for intelligent vehicle based on backstepping algorithm. Transactions of the Chinese Society for Agricultural Machinery 39(6), 42–45 (2008)

    Google Scholar 

  29. 29.

    Perez, J., Milanes, V., Onieva, E., Godoy, J., Alonso, J.: Longitudinal fuzzy control for autonomous overtaking. In: Proc. IEEE International Conference on Mechatronics, pp. 188–193. Istanbul (2011)

  30. 30.

    Milanés, V., Llorca, D.F., Villagrá, J., Pérez, J., Fernández, C., Parra, I., Sotelo, M.A.: Intelligent automatic overtaking system using vision for vehicle detection. Expert Syst. Appl. 39(3), 3362–3373 (2012)

    Article  Google Scholar 

  31. 31.

    Murgovski, N., Sjöberg, J.: Predictive cruise control with autonomous overtaking. In Proc. IEEE Conference on Decision and Control (CDC). Osaka (2015)

  32. 32.

    Montella, A.: Identifying crash contributory factors at urban roundabouts and using association rules to explore their relationships to different crash types. Accident Anal. Prevent. 43(4), 1451–1463 (2011)

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Jawhar Ghommam.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


Appendix: A

To prove Lemma 1, we will introduce the following tan-type BLF [22], in order to take into account the constraint requirement on the safety distance D(t) that separates the host vehicle from the preceding vehicle:

$$ V_{G}=\frac{D^{2}}{\pi}\tan\left( \frac{\pi s^{2}}{2D^{2}}\right)+\frac{1}{2}e^{2} $$

Taking the time derivative of VG with respect to time, by letting \(s_{\cos \limits }=\frac {s}{\cos \limits ^{2}\left (\frac {\pi s^{2}}{2D^{2}}\right )}\) we obtain

$$ \begin{array}{@{}rcl@{}} \dot{V}_{G}&=&s_{\cos}\dot{s}+\frac{2D\dot{D}}{\pi}\tan\left( \frac{\pi s^{2}}{2D^{2}}\right) -\left( \frac{\dot{D}}{D}\right) ss_{\cos}+e\dot{e}\\ &=& s_{\cos}\left( -k_{1}s+e\dot{\psi}_{p}-\zeta\right)+e\left( -\frac{U e}{\sqrt{(e+{\Delta} \hat{\beta})^{2}+{\Delta}^{2}}}-\dot{\psi}_{p} s\right)\\ &&+eg\tilde{\psi}+\frac{2D\dot{D}}{\pi}\tan\left( \frac{\pi s^{2}}{2D^{2}}\right) -\left( \frac{\dot{D}}{D}\right) ss_{\cos}\\ &=&-\frac{k_{2}D^{2}}{\pi}\tan\left( \frac{\pi s^{2}}{2D^{2}}\right)-k_{1}s_{\cos}s-\frac{U e^{2}}{\sqrt{(e+{\Delta} \hat{\beta})^{2}+{\Delta}^{2}}} \end{array} $$
$$ \begin{array}{@{}rcl@{}} &&+eg\tilde{\psi}+\frac{2D\dot{D}}{\pi}\tan\left( \frac{\pi s^{2}}{2D^{2}}\right) -\left( \frac{\dot{D}}{D}\right) ss_{\cos} \end{array} $$

by choosing the control gains (22) and (23), we obtain

$$ \dot{V}_{g}=-(k_{2}-2({k_{1}^{2}}-k_{c}))\frac{D^{2}}{\pi}\tan\left( \frac{\pi s^{2}}{2D^{2}}\right)-\frac{U e^{2}}{\sqrt{(e+{\Delta} \hat{\beta})^{2}+{\Delta}^{2}}}+eg\tilde{\psi} $$

Using the following inequalities:

$$ \frac{|\cos(\tilde{\psi}-1)|}{|\tilde{\psi}|}\leq \Big|\sin(\frac{\tilde{\psi}}{2})\Big|\leq1, \quad \Big\vert \frac{\sin(\tilde{\psi})}{\tilde{\psi}}\Big\vert\leq 1 $$

to show that |g|≤ U and the fact that \(ge\tilde {\psi }\leq \frac {U}{2\varepsilon _{1}}\vert e\vert ^{2}+\frac {\varepsilon _{1}U}{2}|\tilde {\psi }|^{2}\), where ε1 is any arbitrary value such that \(1-\frac {1}{2\varepsilon _{1}}>0\), the following holds

$$ \begin{array}{@{}rcl@{}} \dot{V}_{g}&\leq&-(k_{2}-2({k_{1}^{2}}-k_{c}))\frac{D^{2}}{\pi}\tan\left( \frac{\pi s^{2}}{2D^{2}}\right)-\frac{U (1-\frac{1}{2\varepsilon_{1}})e^{2}}{\sqrt{(e+{\Delta} \hat{\beta})^{2}+{\Delta}^{2}}}+\frac{\varepsilon_{1}U}{2}|\tilde{\psi}|^{2}\\ &\leq&-CV_{G}+\frac{\varepsilon_{1}U}{2}|\tilde{\psi}|^{2} \end{array} $$

where \(C=\min \limits \{k_{2}-2({k_{1}^{2}}-k_{c}), 2\max \limits (U)\}\). From (45), it can be inferred that for all \(\mu =(s,e)^{\top } \in {\mathscr{M}}:=\{\mu \in \mathbb {R}^{2}~|~\frac {1}{2}CV_{G}\geq \gamma (|\psi |)\}\), with γ(.) is \(\mathcal {K}_{\infty }\) function, we have

$$ \begin{array}{@{}rcl@{}} \dot{V}_{G}&\leq&-\frac{1}{2}CV_{G}+\Bigg(\gamma(|\tilde{\psi}|)-\frac{1}{2}CV_{G}\Bigg)\\ &\leq&-\frac{1}{2}CV_{G} \end{array} $$

By the comparison lemma in [23], it follows immediately that for all \(\mu _{0} \in {\mathscr{M}}\), there exists a \(\mathcal {K}{\mathscr{L}}\) function ς such that VG(μ) ≤ ς(VG(μ0), t). Also for all μ such that \(\frac {1}{2}CV_{G}\leq \gamma (|\psi |)\), we have \(V_{g}(\mu )\leq \frac {1}{C}\left (2\gamma (\sup _{\lambda \in [t_{0},t]}|\psi (\lambda )|)\right )\), combining the two inequalities, we arrive at \(V(\mu (t))\leq \max \limits \{\varsigma (V_{G}(\mu _{0}),t),\frac {1}{C}\left (2\gamma (\sup _{\lambda \in [t_{0},t]}|\psi (\lambda )|)\right )\}\), which shows that VG is an ISS-Lyapunov function and thus the closed-loop kinematic tracking error (25) is ISS w.r.t to the entry \(\tilde {\psi }\).

Appendix: B

To prove Lemma 2, first the open-loop tracking error dynamics is developed by taking the time derivative of the filtering error r and using the dynamics (27) and (28) to obtain

$$ \begin{array}{@{}rcl@{}} \dot{r}&=&\ddot{e}+c_{e} \dot{e}=C[\dot{A}_{0}(t)\chi+B_{0} \dot{e}=C\left[\dot{A}_{0}(t)\chi+B_{0} \dot{e}\right]\\ &=&\tilde{N}+N_{d}+CB_{0}\dot{\delta}_{ref}-e \end{array} $$

where the auxiliary terms \(\tilde {N}(\chi ,\dot {\chi },e,\chi _{r},\dot {\chi }_{r})\in \mathbb {R}^{4}\) and \(N_{d}(\chi _{r},\dot {\chi }_{r},\dot {u})\in \mathbb {R}^{4}\) are defined as

$$ \tilde{N}=CA_{0}(t)(\dot{\chi}-\dot{\chi}_{r})+C\dot{A}_{0}(\chi-\chi_{r})+c_{e} \dot{e}+e $$


$$ N_{d}=C\dot{f}(t)-CB_{r}\dot{u}-CA_{r}\dot{\chi}_{r}+CA_{0}(t)\dot{\chi}_{r}+C\dot{A}_{0}(t)\chi_{r} $$

The segregated terms (48) and (49) are motivated by the fact that these terms can be upper bounded by state-dependent terms and upper bounded by constants respectively [11] as follows:

$$ \Vert \tilde{N} \Vert \leq \rho_{0} \Vert \boldsymbol{z}\Vert, \quad \Vert N_{d}\Vert\leq \rho_{1} $$

where \(\boldsymbol {z}=[\boldsymbol {e}^{\top },\boldsymbol {r}^{\top }]^{\top } \in \mathbb {R}^{8}\) and ρ0, ρ1 are positive upper bound constants. Substituting the reference steering angle δref designed as (29) in the open-loop dynamics (47), yields the following closed-loop dynamics:

$$ \dot{\boldsymbol{r}}=\tilde{N}+N_{d}-k_{3}\left( \frac{k_{s}}{k_{3}}+1\right)\boldsymbol{r}-k_{r}\text{sign}(\boldsymbol{r})-\boldsymbol{e} $$

To show the stability of the closed-loop dynamics (51), let VD(e, r) be a continuously differentiable, positive-definite function defined as

$$ V_{D}=\frac{1}{2}\boldsymbol{e}^{\top} \boldsymbol{e}+\frac{1}{2} \boldsymbol{r}^{\top} \boldsymbol{r} $$

Taking the time derivative of (52) along the solutions of (51) and using the upper bounds (50), to obtain

$$ \begin{array}{@{}rcl@{}} \dot{V_{L}}&=&-c_{e} \boldsymbol{e}^{\top} \boldsymbol{e}-k_{3}\left( \frac{k_{s}}{k_{3}}+1\right)\boldsymbol{r}^{\top} \boldsymbol{r}+\boldsymbol{r}^{\top} \tilde{N}+\boldsymbol{r}^{\top} N_{d}-k_{r}\boldsymbol{r}^{\top} \text{sign}(\boldsymbol{r})\\ &\leq&-c_{e} \Vert \boldsymbol{e} \Vert^{2}-k_{s}\Vert \boldsymbol{r} \Vert^{2}-\left( k_{3} \Vert \boldsymbol{r}\Vert^{2}-\rho_{0}\Vert\boldsymbol{r}\Vert \Vert\boldsymbol{z}\Vert\right)-(k_{r}-\rho_{1})\Vert \boldsymbol{r}\Vert \end{array} $$

If kr satisfies the sufficient gain condition in (31), then the last term in (53) becomes strictly negative, which implies that \(\dot {V}_{D}\) can be upper bounded as

$$ \dot{V_{L}} \leq -c_{e} \Vert \boldsymbol{e} \Vert^{2}-k_{s}\Vert \boldsymbol{r} \Vert^{2}-\left( k_{3} \Vert \boldsymbol{r}\Vert^{2}-\rho_{0}\Vert\boldsymbol{r}\Vert \Vert\boldsymbol{z}\Vert\right) $$

By completing the squares, the upper bound in (54) can be expressed in a more convenient form. To this end, the term \(\frac {{\rho _{0}^{2}}}{4{k_{3}^{2}}}\Vert \boldsymbol {z}\Vert ^{2}\) is added then subtracted to the right-hand side of (54), yields

$$ \begin{array}{@{}rcl@{}} \dot{V_{L}} &\leq& -c_{e} \Vert \boldsymbol{e} \Vert^{2}-k_{s}\Vert \boldsymbol{r} \Vert^{2}-k_{3}\left( \Vert \boldsymbol{r}\Vert-\frac{\rho_{0}}{2k_{3}} \Vert\boldsymbol{z}\Vert\right)^{2}+\frac{{\rho_{0}^{2}}}{4{k_{3}^{2}}}\Vert \boldsymbol{z}\Vert^{2} \\ &\leq&-\boldsymbol{z}^{\top} \text{diag}\{c_{e} I_{4\times 4}, k_{r}I_{4\times 4}\}\boldsymbol{z}+\frac{{\rho_{0}^{2}}}{4{k_{3}^{2}}}\Vert \boldsymbol{z}\Vert^{2}\\ &\leq&-\underbrace{\left( \min\{c_{e},k_{r}\}-\frac{{\rho_{0}^{2}}}{4{k_{3}^{2}}}\right)}_{\lambda}\Vert \boldsymbol{z} \Vert^{2} \end{array} $$

where the fact that zdiag{z} is positive provided that the condition on the gain k3 is satisfied and verifies (31), from the definition of VD in (52) using (55), it follows that \(\dot {V}_{D}\leq -\lambda V_{D}\), hence it can be concluded that \(\Vert \boldsymbol {e}\Vert \leq \Vert \boldsymbol {z}(0)\Vert \exp \left (-\frac {\lambda }{2}t\right ), \forall t\in [0,\infty )\). This implies that Uy converges to Uyd as time goes to infinity. Also \(\dot {\psi }\) converges to \(\dot {\bar {\psi }}\) which consequently implies that ψ converges to ψd as time goes to infinity.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Osman, K., Ghommam, J. & Saad, M. Guidance Based Lane-Changing Control in High-Speed Vehicle for the Overtaking Maneuver. J Intell Robot Syst 98, 643–665 (2020).

Download citation


  • Autonomous vehicles
  • Vehicle dynamics
  • Road following
  • Guidance control
  • RISE control
  • Overtaking