A Comparative Analysis of Pattern Matching Techniques Towards OGM Evaluation

Abstract

The alignment of two occupancy grid maps generated by SLAM algorithms is a quite researched problem, being an obligatory step either for unsupervised map merging techniques or for evaluation of OGMs (Occupancy Grid Maps) against a blueprint of the environment. This paper provides an overview of the existing automatic alignment techniques of two occupancy grid maps that employ pattern matching. Additionally, an alignment pipeline using local features and image descriptors is implemented, as well as a method to eliminate erroneous correspondences, aiming at producing the correct transformation between the two maps. Finally, map quality metrics are proposed and utilized, in order to quantify the produced map’s correctness. A comparative analysis was performed over a number of image processing and OGM-oriented detectors and descriptors, in order to identify the best combinations for the map evaluation problem, performed between two OGMs or between an OGM and a Blueprint map.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Thrun, S., Burgard, W., Fox, D.: Probabilistic robotics. MIT Press, Cambridge (2005)

    Google Scholar 

  2. 2.

    Elfes, A.: Using occupancy grids for mobile robot perception and navigation. Computer 22(6), 46–57 (1989)

    Article  Google Scholar 

  3. 3.

    Bailey, T., Nieto, J., Guivant, J., Stevens, M., Nebot, E.: Consistency of the EKF-SLAM algorithm. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3562–3568. IEEE (2006)

  4. 4.

    Julier, S., Uhlmann, J., Durrant-Whyte, H.F.: A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Trans. Autom. Control 45(3), 477–482 (2000)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Montemerlo, M., Thrun, S., Koller, D., Ben, W.: FastSLAM A factored solution to the simultaneous localization and mapping problem. Aaai/iaai 593598 (2002)

  6. 6.

    Montemerlo, M., Sebastian, T.: FastSLAM A scalable method for the simultaneous localization and mapping problem in robotics, vol. 27. Springer, Berlin (2007)

    Google Scholar 

  7. 7.

    Thrun, S., Montemerlo, M.: The graph SLAM algorithm with applications to large-scale mapping of urban structures. Int. J. Robot. Res. 25(5-6), 403–429 (2006)

    Article  Google Scholar 

  8. 8.

    Mingas, G., Tsardoulias, E., Petrou, L.: An FPGA implementation of the SMG-SLAM algorithm. Microprocess. Microsyst. 36(3), 190–204 (2012)

    Article  Google Scholar 

  9. 9.

    Thallas, A.G., Tsardoulias, E.G., Petrou, L.: Topological based scan Matching–Odometry posterior sampling in RBPF under kinematic model failures. J. Intell. Robot. Syst. 91(3-4), 543–568 (2018)

    Article  Google Scholar 

  10. 10.

    Lee, D.C.: The map-building and exploration strategies of a simple sonar-equipped mobile robot: An experimental, quantitative evaluation, vol. 13. University Press, Cambridge (2003)

    Google Scholar 

  11. 11.

    Kümmerle, R., Steder, B., Dornhege, C., Ruhnke, M., Grisetti, G., Stachniss, C., Kleiner, A.: On measuring the accuracy of SLAM algorithms. Auton. Robot. 27(4), 387 (2009)

    Article  Google Scholar 

  12. 12.

    Wulf, O., Nuchter, A., Hertzberg, J., Wagner, B.: Ground truth evaluation of large urban 6D SLAM. In: 2007. IROS IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 650–657. IEEE (2007)

  13. 13.

    Burgard, W., Stachniss, C., Grisetti, G., Steder, B., Kümmerle, R., Dornhege, C., Ruhnke, M., Kleiner, A., Tardös, J.D.: A comparison of SLAM algorithms based on a graph of relations. In: 2009. IROS IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2089–2095. IEEE (2009)

  14. 14.

    Lu, F., Milios, E.: Globally consistent range scan alignment for environment mapping. Auton. Robot. 4 (4), 333–349 (1997)

    Article  Google Scholar 

  15. 15.

    Birk, A.: A quantitative assessment of structural errors in grid maps. Auton. Robot. 28(2), 187 (2010)

    Article  Google Scholar 

  16. 16.

    Schwertfeger, S.: Robotic mapping in the real world: Performance Evaluation and System Integration. PhD diss. Jacobs University Bremen (2012)

  17. 17.

    Konolige, K., Fox, D., Limketkai, B., Ko, J., Stewart, B.: Map merging for distributed robot navigation. In: 2003.(IROS 2003). Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1, pp. 212–217. IEEE (2003)

  18. 18.

    Birk, A., Carpin, S.: Merging occupancy grid maps from multiple robots. Proc. IEEE 94(7), 1384–1397 (2006)

    Article  Google Scholar 

  19. 19.

    Birk, A.: Learning geometric concepts with an evolutionary algorithm. Environment 4, 3 (1996)

    Google Scholar 

  20. 20.

    Blanco, J.-L., González-Jiménez, J., Fernández-Madrigal, J.-A.: A robust, multi-hypothesis approach to matching occupancy grid maps. Robotica 31(5), 687–701 (2013)

    Article  Google Scholar 

  21. 21.

    Rapp, M, Giese, T., Hahn, M., Dickmann, J., Dietmayer, K.: A feature-based approach for group-wise grid map registration. In: 2015 IEEE 18th International Conference on Intelligent Transportation Systems (ITSC), , pp. 511–516. IEEE (2015)

  22. 22.

    Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: An efficient alternative to SIFT or SURF. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 2564–2571. IEEE (2011)

  23. 23.

    Muja, M., Lowe, D.G.: Fast approximate nearest neighbors with automatic algorithm configuration. VISAPP (1) 2(331-340), 2 (2009)

    Google Scholar 

  24. 24.

    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  25. 25.

    Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. In: Readings in computer vision, pp. 726–740 (1987)

  26. 26.

    Tsardoulias, E., Petrou, L.: Critical rays scan match SLAM. J. Intell. Robot. Syst. 72(3-4), 441–462 (2013)

    Article  Google Scholar 

  27. 27.

    Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). Comput. Vis. Image Understand. 110(3), 346–359 (2008)

    Article  Google Scholar 

  28. 28.

    Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In: European conference on computer vision, pp. 430–443. Springer, Berlin (2006)

  29. 29.

    Agrawal, M, Konolige, K., Blas, M.R.: Censure: Center surround extremas for realtime feature detection and matching. In: European Conference on Computer Vision, pp. 102–115. Springer, Berlin (2008)

  30. 30.

    Mair, E., Hager, G.D., Burschka, D., Suppa, M., Hirzinger, G.: Adaptive and generic corner detection based on the accelerated segment test. In: European Conference on Computer vision, pp. 183–196. Springer, Berlin (2010)

  31. 31.

    Leutenegger, S, Chli, M., Siegwart, R.Y.: BRISK: Binary robust invariant scalable keypoints. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 2548–2555. IEEE (2011)

  32. 32.

    Harris, C., Stephens, M.: A combined corner and edge detector. Alvey Vis. Conf. 15(50), 10–5244 (1988)

    Google Scholar 

  33. 33.

    Shi, J: Good features to track. In: 1994 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1994. Proceedings CVPR’94, pp. 593–600. IEEE (1994)

  34. 34.

    Calonder, M., Lepetit, V., Strecha, C., Fua, P.: Brief: Binary robust independent elementary features. In: European conference on computer vision, pp. 778–792. Springer, Berlin (2010)

  35. 35.

    Alahi, A, Ortiz, R., Vandergheynst, P.: Freak: Fast retina keypoint. In: 2012 IEEE Conference on Computer vision and pattern recognition (CVPR), pp. 510–517. IEEE (2012)

  36. 36.

    Choset, H.M., Hutchinson, S., Lynch, K.M., Kantor, G., Burgard, W., Kavraki, L.E., Thrun, S.: Principles of robot motion: theory, algorithms, and implementation. MIT Press, Cambridge (2005)

    Google Scholar 

  37. 37.

    Carpin, S., Birk, A., Jucikas, V.: On map merging. Robot. Auton. Syst. 53(1), 1–14 (2005)

    Article  Google Scholar 

  38. 38.

    Jaulmes, R., Moliné, E., Obriet-Leclef, J.: Towards a quantitative evaluation of simultaneous localization and mapping methods. In: Control Architecture of Robots national conference (2009)

  39. 39.

    Grisetti, G., Stachniss, C., Burgard, W.: Improved techniques for grid mapping with rao-blackwellized particle filters. IEEE Trans. Robot. 23(1), 34 (2007)

    Article  Google Scholar 

  40. 40.

    Protopapas, M.: OGM merging ROS package. Available https://github.com/robotics-4-all/ogm_merging

  41. 41.

    Shin, M, Kim, J., Jeong, J., Park, J.B.: 3D LiDAR-based point cloud map registration: Using spatial location of visual features. In: 2017 2nd International Conference on Robotics and Automation Engineering (ICRAE), pp. 373–378. IEEE (2017)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. G. Tsardoulias.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tsardoulias, E.G., Protopapas, M., Symeonidis, A.L. et al. A Comparative Analysis of Pattern Matching Techniques Towards OGM Evaluation. J Intell Robot Syst 98, 733–758 (2020). https://doi.org/10.1007/s10846-019-01053-7

Download citation

Keywords

  • Occupancy grid maps
  • Map registration
  • SLAM evaluation
  • Map merging
  • Image processing