Advertisement

Optimal Trajectory Generation and Design of an 8-DoF Compliant Biped Robot for Walk on Inclined Ground

Article
  • 1 Downloads

Abstract

Robots with joint or link compliance are gaining importance due to their inherent safety. In this paper four different designs of compliant shanks of an 8 degrees of freedom (DoF) biped robot are compared to get the least energy consumed during walk. Different leg and pelvis trajectories of the biped during walk are generated by varying the gait parameters. The deflection of the compliant links during walk is modeled using a finite element method (FEM). Simulations are carried out in which the optimal walking trajectory that consumes least energy is found by using a genetic algorithm (GA). Balance is ensured during walk by ensuring that the trajectory always satisfies the zero moment point (ZMP) criteria. The optimal trajectories obtained from the simulations were then experimentally evaluated for a compliant link biped robot. The motion of the different joints of the biped during the experiment was tracked using a vision system and the performance of the rigid link and compliant link bipeds compared. The best compliant link design was finally chosen from the four different designs.

Keywords

Compliant-link Biped robot Inclined terrain Walking gait 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Winter, D.A.: Human balance and posture control during standing and walking. Gait Posture 3(4), 193–214 (1995)CrossRefGoogle Scholar
  2. 2.
    Kim, J.-Y., Park, I.-W., Oh, J.-H.: Walking control algorithm of biped humanoid robot on uneven and inclined floor. J. Intell. Robot. Syst. 48(4), 457–484 (2007)CrossRefGoogle Scholar
  3. 3.
    Vukobratovic, M., Juricic, D.: Contribution to the synthesis of biped gait. IEEE Trans. Biomed. Eng. 16 (1), 1–6 (1969)CrossRefGoogle Scholar
  4. 4.
    Sardain, P., Bessonnet, G.: Forces acting on a biped robot- center of pressure-zero moment point. IEEE Trans. Syst. Man Cybern. Part A: Syst. Humans 34(5), 630–637 (2004)CrossRefGoogle Scholar
  5. 5.
    Park, I.-W., Kim, J.-Y., Oh, J.-H.: Online biped walking pattern generation for humanoid robot KHR-3 (kaist humanoid robot-3: Hubo). In: 2006 6th IEEE-RAS International Conference on Humanoid Robots. IEEE, pp. 398–403 (2006)Google Scholar
  6. 6.
    Al-Shuka, H.F., Corves, B.J.: On the walking pattern generators of biped robot. J. Autom. Control Eng. 1(2), 149–155 (2013)CrossRefGoogle Scholar
  7. 7.
    Xu, W., Huang, Q., Li, J., Yu, Z., Chen, X., Xu, Q.: An improved ZMP trajectory design for the biped robot bhr. In: 2011 IEEE International Conference on Robotics and Automation (ICRA). IEEE, pp 569–574 (2011)Google Scholar
  8. 8.
    Goswami, A.: Postural stability of biped robots and the foot-rotation indicator (FRI) point. Int. J. Robot. Res. 18(6), 523–533 (1999)CrossRefGoogle Scholar
  9. 9.
    Lee, S.-H., Goswami, A.: A momentum-based balance controller for humanoid robots on non-level and non-stationary ground. Auton. Robot. 33(4), 399–414 (2012)CrossRefGoogle Scholar
  10. 10.
    Geyer, H, Seyfarth, A., Blickhan, R.: Compliant leg behaviour explains basic dynamics of walking and running. In: Proceedings of the Royal Society B: Biological Sciences, vol. 273. The Royal Society, pp. 2861–2867 (2006)Google Scholar
  11. 11.
    Raibert, M.H., Craig, J.J.: Hybrid position/force control of manipulators. J. Dyn. Syst. Measur. Control 103(2), 126–133 (1981)CrossRefGoogle Scholar
  12. 12.
    Anderson, R., Spong, M.W.: Hybrid impedance control of robotic manipulators. IEEE J. Robot. Autom. 4(5), 549–556 (1988)CrossRefGoogle Scholar
  13. 13.
    Iida, F., Rummel, J., Seyfarth, A.: Bipedal walking and running with spring-like biarticular muscles. J. Biomech. 41(3), 656–667 (2008)CrossRefGoogle Scholar
  14. 14.
    Migliore, S.A., Ting, L.H., DeWeerth, S.P.: Passive joint stiffness in the hip and knee increases the energy efficiency of leg swinging. Auton. Robot. 29(1), 119–135 (2010)CrossRefGoogle Scholar
  15. 15.
    Omer, A.M.M., Ghorbani, R., Lim, H.-O., Takanishi, A.: Simulation of semi-passive dynamic walking for humanoid robots. In: 8th IEEE-RAS International Conference on Humanoid Robots. Humanoids 2008. IEEE, pp. 541–544 (2008)Google Scholar
  16. 16.
    Wu, T.-Y., Yeh, T.-J.: Optimal design and implementation of an energy-efficient biped walking in semi-active manner. Robotica 27(6), 841–852 (2009)CrossRefGoogle Scholar
  17. 17.
    Shrivastava, M., Dutta, A., Saxena, A.: Trajectory generation using GA for an 8 dof biped robot with deformation at the sole of the foot. J. Intell. Robot. Syst. 49(1), 67–84 (2007)CrossRefGoogle Scholar
  18. 18.
    Ogawa, Y., Maita, D., Venture, G.: Gait analysis for the development of the biped robot foot structure. IFAC Proc. Vol. 47(3), 2159–2164 (2014)CrossRefGoogle Scholar
  19. 19.
    Kim, B.-H.: Work analysis of compliant leg mechanisms for bipedal walking robots. Int. J. Adv. Robot. Syst. 10 (9), 334 (2013)CrossRefGoogle Scholar
  20. 20.
    Singh, S.P., Dutta, A., Saxena, A.: Design of a biped robot with torsion springs at the joints for reduced energy consumption during walk. In: ASME Design Engineering and Technical Confer- ences. ASME, pp. 987–992 (2009)Google Scholar
  21. 21.
    Zhang, L., Zhou, C.: Optimal three-dimensional biped walking pattern generation based on geodesics. Int. J. Adv. Robot. Syst. 14(2), 1–11 (2017)Google Scholar
  22. 22.
    Sarkar, A., Dutta, A.: 8-dof biped robot with compliant-links. Robot. Auton. Syst. 63, 57–67 (2015)CrossRefGoogle Scholar
  23. 23.
    Sarkar, A., Kishore, N., Dutta, A: 8-dof biped robot with compliant links. In: 2014 13th International Conference on Control Automation Robotics & Vision (ICARCV). IEEE, pp. 1195–1200 (2014)Google Scholar
  24. 24.
    Hashimoto, K., Sugahara, Y., Ohta, A., Sunazuka, H., Tanaka, C., Kawase, M., Lim, H.-O., Takanishi, A.: Realization of stable biped walking on public road with new biped foot system adaptable to uneven terrain. In: 2006 First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics. IEEE, pp. 226–231 (2006)Google Scholar
  25. 25.
    Mousavi, P.N., Bagheri, A.: Mathematical simulation of a seven link biped robot on various surfaces and zmp considerations. Appl. Math. Model. 31(1), 18–37 (2007)CrossRefMATHGoogle Scholar
  26. 26.
    Mousavi, P.N., Nataraj, C., Bagheri, A., Entezari, M.A.: Mathematical simulation of combined trajectory paths of a seven link biped robot. Appl. Math. Model. 32(7), 1445–1462 (2008)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Deits, R., Tedrake, R.: Footstep planning on uneven terrain with mixed-integer convex optimization. In: 2014 14th IEEE-RAS International Conference on Humanoid Robots (Humanoids). IEEE, pp. 279–286 (2014)Google Scholar
  28. 28.
    Kang, H.-j., Hashimoto, K., Kondo, H., Hattori, K., Nishikawa, K., Hama, Y., Lim, H. -o., Takanishi, A., Suga, K., Kato, K.: Realization of biped walking on uneven terrain by new foot mechanism capable of detecting ground surface. In: 2010 IEEE International Conference on Robotics and Automation (ICRA). IEEE, pp. 5167–5172 (2010)Google Scholar
  29. 29.
    Ferreira, J.P., Crisóstomo, M., Coimbra, A.P.: Tuning a pd controller based on an svr for the control of a biped robot subject to external forces and slope variation. Int. J. Adv. Robot. Syst. 11(3), 32 (2014)CrossRefGoogle Scholar
  30. 30.
    Choi, K.-J., Hong, D.S.: Posture optimization for a humanoid robot using a simple genetic algorithm. Int. J. Precis. Eng. Manuf. 11(3), 381–390 (2010)CrossRefGoogle Scholar
  31. 31.
    Kim, D.W., Park, J.-W., Park, S -W.: Genetic algorithm based robot posture. In: 2012 International Conference on Future Generation Information Technology. Springer, pp. 65–72 (2012)Google Scholar
  32. 32.
    Saputra, A.A., Takeda, T., Kubota, N.: Efficiency energy on humanoid robot walking using evolutionary algorithm. In: 2015 IEEE Congress on Evolutionary Computation (CEC). IEEE, pp. 573–578 (2015)Google Scholar
  33. 33.
    Wehner, S., Bennewitz, M: Optimizing the gait of a humanoid robot towards human-like walking. In: ECMR, pp. 277–282 (2009)Google Scholar
  34. 34.
    Winter, D.A.: Biomechanics and Motor Control of Human Movement. Wiley (2009)Google Scholar
  35. 35.
    Fu, K.S., Gonzalez, R.C., Lee, C.S.: Robotics: Control, Sensing, Vision and Intelligence. McGraw-Hill Book (1987)Google Scholar
  36. 36.
    Denavit, J., Hartenberg, R., Razi, R., Uicker, J.: Velocity, acceleration, and static-force analyses of spatial linkages. J. Appl. Mech. 32(4), 903–910 (1965)CrossRefGoogle Scholar
  37. 37.
    Lewis, R: Autonomous manipulation on a robot: Summary of manipulator software functions (1974)Google Scholar
  38. 38.
    Paul, R.P.: Robot manipulators: mathematics, programming, and control: The computer control of robot manipulators. Richard Paul (1981)Google Scholar
  39. 39.
    Ghosal, A.: Robotics: Fundamental Concepts and Analysis. Oxford University Press (2006)Google Scholar
  40. 40.
    Fabien, B.C.: Analytical System Dynamics. Springer (2009)Google Scholar
  41. 41.
    Tenenbaum, R.A.: Fundamentals of applied dynamics. Springer (2004)Google Scholar
  42. 42.
    Vukobratović, M., Borovac, B.: Zero-moment point - thirty five years of its life. Int. J. Humanoid Robot. 1(01), 157–173 (2004)CrossRefGoogle Scholar
  43. 43.
    Xiang, Y., Arora, J.S., Rahmatalla, S., Abdel-Malek, K.: Optimization-based dynamic human walking prediction: One step formulation. Int. J. Numer. Methods Eng. 79(6), 667–695 (2009)CrossRefMATHGoogle Scholar
  44. 44.
    Hughes, T.J.: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Dover Publications (2000)Google Scholar
  45. 45.
    Robotis website, http://www.robotis.com/xe/

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Mechanical Engineering DepartmentIIT KanpurKanpurIndia

Personalised recommendations