Skip to main content

Advertisement

Log in

Optimal Trajectory Generation and Design of an 8-DoF Compliant Biped Robot for Walk on Inclined Ground

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Robots with joint or link compliance are gaining importance due to their inherent safety. In this paper four different designs of compliant shanks of an 8 degrees of freedom (DoF) biped robot are compared to get the least energy consumed during walk. Different leg and pelvis trajectories of the biped during walk are generated by varying the gait parameters. The deflection of the compliant links during walk is modeled using a finite element method (FEM). Simulations are carried out in which the optimal walking trajectory that consumes least energy is found by using a genetic algorithm (GA). Balance is ensured during walk by ensuring that the trajectory always satisfies the zero moment point (ZMP) criteria. The optimal trajectories obtained from the simulations were then experimentally evaluated for a compliant link biped robot. The motion of the different joints of the biped during the experiment was tracked using a vision system and the performance of the rigid link and compliant link bipeds compared. The best compliant link design was finally chosen from the four different designs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Winter, D.A.: Human balance and posture control during standing and walking. Gait Posture 3(4), 193–214 (1995)

    Article  MathSciNet  Google Scholar 

  2. Kim, J.-Y., Park, I.-W., Oh, J.-H.: Walking control algorithm of biped humanoid robot on uneven and inclined floor. J. Intell. Robot. Syst. 48(4), 457–484 (2007)

    Article  Google Scholar 

  3. Vukobratovic, M., Juricic, D.: Contribution to the synthesis of biped gait. IEEE Trans. Biomed. Eng. 16 (1), 1–6 (1969)

    Article  Google Scholar 

  4. Sardain, P., Bessonnet, G.: Forces acting on a biped robot- center of pressure-zero moment point. IEEE Trans. Syst. Man Cybern. Part A: Syst. Humans 34(5), 630–637 (2004)

    Article  Google Scholar 

  5. Park, I.-W., Kim, J.-Y., Oh, J.-H.: Online biped walking pattern generation for humanoid robot KHR-3 (kaist humanoid robot-3: Hubo). In: 2006 6th IEEE-RAS International Conference on Humanoid Robots. IEEE, pp. 398–403 (2006)

  6. Al-Shuka, H.F., Corves, B.J.: On the walking pattern generators of biped robot. J. Autom. Control Eng. 1(2), 149–155 (2013)

    Article  Google Scholar 

  7. Xu, W., Huang, Q., Li, J., Yu, Z., Chen, X., Xu, Q.: An improved ZMP trajectory design for the biped robot bhr. In: 2011 IEEE International Conference on Robotics and Automation (ICRA). IEEE, pp 569–574 (2011)

  8. Goswami, A.: Postural stability of biped robots and the foot-rotation indicator (FRI) point. Int. J. Robot. Res. 18(6), 523–533 (1999)

    Article  Google Scholar 

  9. Lee, S.-H., Goswami, A.: A momentum-based balance controller for humanoid robots on non-level and non-stationary ground. Auton. Robot. 33(4), 399–414 (2012)

    Article  Google Scholar 

  10. Geyer, H, Seyfarth, A., Blickhan, R.: Compliant leg behaviour explains basic dynamics of walking and running. In: Proceedings of the Royal Society B: Biological Sciences, vol. 273. The Royal Society, pp. 2861–2867 (2006)

  11. Raibert, M.H., Craig, J.J.: Hybrid position/force control of manipulators. J. Dyn. Syst. Measur. Control 103(2), 126–133 (1981)

    Article  Google Scholar 

  12. Anderson, R., Spong, M.W.: Hybrid impedance control of robotic manipulators. IEEE J. Robot. Autom. 4(5), 549–556 (1988)

    Article  Google Scholar 

  13. Iida, F., Rummel, J., Seyfarth, A.: Bipedal walking and running with spring-like biarticular muscles. J. Biomech. 41(3), 656–667 (2008)

    Article  Google Scholar 

  14. Migliore, S.A., Ting, L.H., DeWeerth, S.P.: Passive joint stiffness in the hip and knee increases the energy efficiency of leg swinging. Auton. Robot. 29(1), 119–135 (2010)

    Article  Google Scholar 

  15. Omer, A.M.M., Ghorbani, R., Lim, H.-O., Takanishi, A.: Simulation of semi-passive dynamic walking for humanoid robots. In: 8th IEEE-RAS International Conference on Humanoid Robots. Humanoids 2008. IEEE, pp. 541–544 (2008)

  16. Wu, T.-Y., Yeh, T.-J.: Optimal design and implementation of an energy-efficient biped walking in semi-active manner. Robotica 27(6), 841–852 (2009)

    Article  Google Scholar 

  17. Shrivastava, M., Dutta, A., Saxena, A.: Trajectory generation using GA for an 8 dof biped robot with deformation at the sole of the foot. J. Intell. Robot. Syst. 49(1), 67–84 (2007)

    Article  Google Scholar 

  18. Ogawa, Y., Maita, D., Venture, G.: Gait analysis for the development of the biped robot foot structure. IFAC Proc. Vol. 47(3), 2159–2164 (2014)

    Article  Google Scholar 

  19. Kim, B.-H.: Work analysis of compliant leg mechanisms for bipedal walking robots. Int. J. Adv. Robot. Syst. 10 (9), 334 (2013)

    Article  Google Scholar 

  20. Singh, S.P., Dutta, A., Saxena, A.: Design of a biped robot with torsion springs at the joints for reduced energy consumption during walk. In: ASME Design Engineering and Technical Confer- ences. ASME, pp. 987–992 (2009)

  21. Zhang, L., Zhou, C.: Optimal three-dimensional biped walking pattern generation based on geodesics. Int. J. Adv. Robot. Syst. 14(2), 1–11 (2017)

    Google Scholar 

  22. Sarkar, A., Dutta, A.: 8-dof biped robot with compliant-links. Robot. Auton. Syst. 63, 57–67 (2015)

    Article  Google Scholar 

  23. Sarkar, A., Kishore, N., Dutta, A: 8-dof biped robot with compliant links. In: 2014 13th International Conference on Control Automation Robotics & Vision (ICARCV). IEEE, pp. 1195–1200 (2014)

  24. Hashimoto, K., Sugahara, Y., Ohta, A., Sunazuka, H., Tanaka, C., Kawase, M., Lim, H.-O., Takanishi, A.: Realization of stable biped walking on public road with new biped foot system adaptable to uneven terrain. In: 2006 First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics. IEEE, pp. 226–231 (2006)

  25. Mousavi, P.N., Bagheri, A.: Mathematical simulation of a seven link biped robot on various surfaces and zmp considerations. Appl. Math. Model. 31(1), 18–37 (2007)

    Article  MATH  Google Scholar 

  26. Mousavi, P.N., Nataraj, C., Bagheri, A., Entezari, M.A.: Mathematical simulation of combined trajectory paths of a seven link biped robot. Appl. Math. Model. 32(7), 1445–1462 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Deits, R., Tedrake, R.: Footstep planning on uneven terrain with mixed-integer convex optimization. In: 2014 14th IEEE-RAS International Conference on Humanoid Robots (Humanoids). IEEE, pp. 279–286 (2014)

  28. Kang, H.-j., Hashimoto, K., Kondo, H., Hattori, K., Nishikawa, K., Hama, Y., Lim, H. -o., Takanishi, A., Suga, K., Kato, K.: Realization of biped walking on uneven terrain by new foot mechanism capable of detecting ground surface. In: 2010 IEEE International Conference on Robotics and Automation (ICRA). IEEE, pp. 5167–5172 (2010)

  29. Ferreira, J.P., Crisóstomo, M., Coimbra, A.P.: Tuning a pd controller based on an svr for the control of a biped robot subject to external forces and slope variation. Int. J. Adv. Robot. Syst. 11(3), 32 (2014)

    Article  Google Scholar 

  30. Choi, K.-J., Hong, D.S.: Posture optimization for a humanoid robot using a simple genetic algorithm. Int. J. Precis. Eng. Manuf. 11(3), 381–390 (2010)

    Article  Google Scholar 

  31. Kim, D.W., Park, J.-W., Park, S -W.: Genetic algorithm based robot posture. In: 2012 International Conference on Future Generation Information Technology. Springer, pp. 65–72 (2012)

  32. Saputra, A.A., Takeda, T., Kubota, N.: Efficiency energy on humanoid robot walking using evolutionary algorithm. In: 2015 IEEE Congress on Evolutionary Computation (CEC). IEEE, pp. 573–578 (2015)

  33. Wehner, S., Bennewitz, M: Optimizing the gait of a humanoid robot towards human-like walking. In: ECMR, pp. 277–282 (2009)

  34. Winter, D.A.: Biomechanics and Motor Control of Human Movement. Wiley (2009)

  35. Fu, K.S., Gonzalez, R.C., Lee, C.S.: Robotics: Control, Sensing, Vision and Intelligence. McGraw-Hill Book (1987)

  36. Denavit, J., Hartenberg, R., Razi, R., Uicker, J.: Velocity, acceleration, and static-force analyses of spatial linkages. J. Appl. Mech. 32(4), 903–910 (1965)

    Article  Google Scholar 

  37. Lewis, R: Autonomous manipulation on a robot: Summary of manipulator software functions (1974)

  38. Paul, R.P.: Robot manipulators: mathematics, programming, and control: The computer control of robot manipulators. Richard Paul (1981)

  39. Ghosal, A.: Robotics: Fundamental Concepts and Analysis. Oxford University Press (2006)

  40. Fabien, B.C.: Analytical System Dynamics. Springer (2009)

  41. Tenenbaum, R.A.: Fundamentals of applied dynamics. Springer (2004)

  42. Vukobratović, M., Borovac, B.: Zero-moment point - thirty five years of its life. Int. J. Humanoid Robot. 1(01), 157–173 (2004)

    Article  Google Scholar 

  43. Xiang, Y., Arora, J.S., Rahmatalla, S., Abdel-Malek, K.: Optimization-based dynamic human walking prediction: One step formulation. Int. J. Numer. Methods Eng. 79(6), 667–695 (2009)

    Article  MATH  Google Scholar 

  44. Hughes, T.J.: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Dover Publications (2000)

  45. Robotis website, http://www.robotis.com/xe/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Dutta.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, A., Dutta, A. Optimal Trajectory Generation and Design of an 8-DoF Compliant Biped Robot for Walk on Inclined Ground. J Intell Robot Syst 94, 583–602 (2019). https://doi.org/10.1007/s10846-018-0882-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-018-0882-9

Keywords

Navigation