Skip to main content
Log in

Real-Time UAS Guidance for Continuous Curved GNSS Approaches

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper presents new efficient guidance algorithms allowing Unmanned Aircraft Systems (UAS) to avoid a variety of Global Navigation Satellite System (GNSS) continuity and integrity performance threats detected by an Aircraft Based Augmentation System (ABAS). In particular, the UAS guidance problem is formulated as an optimal control-based Multi-Objective Trajectory Optimization (MOTO) problem subject to suitable dynamic and geometric constraints. Direct transcription methods of the global orthogonal collocation (pseudospectral) family are exploited for the solution of the MOTO problem, generating optimal trajectories for curved GNSS approaches in real-time. Three degrees-of-freedom aircraft dynamics models and suitable GNSS satellite visibility models based on Global Positioning System (GPS) constellation ephemeris data are utilised in the MOTO solution algorithm. The performance of the proposed MOTO algorithm is evaluated in representative simulation case studies adopting the JAVELIN UAS as the reference platform. The paper focusses on descent and initial curved GNSS approach phases in a Terminal Maneuvering Area (TMA) scenario, where multiple manned/unmanned aircraft converge on the same short and curved final GNSS approach leg. The results show that the adoption of MOTO based on pseudospectral methods allows an efficient exploitation of ABAS model-predictive augmentation features in online GNSS guidance tasks, supporting the calculation of suitable arrival trajectories in 7 to 16 s using a normal PC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Basset, G., Xu, Y., Yakimenko, O.A.: Computing short-time aircraft maneuvers using direct methods. J. Comput. Syst. Sci. Int. 49(3), 481–513 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bearman, P., Gardner, R., Green, J., Maynard, G., et al.: Air Travel - Greener By Design - Annual Report 2014–2015. RAeS, London (2015)

    Google Scholar 

  3. Ben-Asher, J.Z.: Optimal control theory with aerospace applications. In: American Institute of Aeronautics and Astronautics (AIAA). Reston (2010)

  4. Betts, J.T.: Practical Methods for Optimal Control and Estimation Using Nonlinear Programming. SIAM, Philadelphia (2010)

    Book  MATH  Google Scholar 

  5. Brix, K., Canuto, C., Dahmen, W.: Legendre-Gauss-Lobatto grids and associated nested dyadic grids. In: Aachen Institute for Advanced Study in Computational Engineering Science (2013)

  6. Burston, M., Sabatini, R., Gardi, A., Clothier, R.: Reverse engineering of a fixed wing unmanned aircraft 6-DoF model based on laser scanner measurements. In: 2014 IEEE International Workshop on Metrology for Aerospace, MetroAeroSpace 2014 Proceedings, Benevento (2014)

  7. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods—Fundamentals in Single Domains. Springer, Berlin (2007)

    MATH  Google Scholar 

  8. CASA: Navigation authorisations: APV Baro-VNAV. In: Civil Aviation Safety Authority (CASA) of Australia Advisory Circular AC 91U-II. Canberra (2012)

  9. Chircop, K., Gardi, A., Zammit Mangion, D., Sabatini, R.: A new computational technique for the generation of optimised aircraft trajectories. Nonlinear Eng. 6(4), 249–262 (2017)

    Article  Google Scholar 

  10. den Boer, R., Beers, C., Sanchez Escalonilla, P., Gomez de Segura, A., et al.: SOURDINE II Final Report (2006)

  11. Gardi, A., Sabatini, R.: Descent 4D trajectory optimisation for curved GNSS approaches. In: 2017 International Conference on Unmanned Aircraft Systems. ICUAS, Miami (2017)

  12. Gardi, A., Sabatini, R., Ramasamy, S.: Multi-objective optimisation of aircraft flight trajectories in the ATM and avionics context. Prog. Aerosp. Sci. 83, 1–36 (2016)

    Article  Google Scholar 

  13. Khardi, S., Abdallah, L.: Optimization approaches of aircraft flight path reducing noise: comparison of modeling methods. Appl. Acoust. 73(4), 291–301 (2012)

    Article  Google Scholar 

  14. Kistan, T., Gardi, A., Sabatini, R., Ramasamy, S., et al.: An evolutionary outlook of air traffic flow management techniques. Prog. Aerosp. Sci. 88, 15–42 (2017)

    Article  Google Scholar 

  15. Kuenz, A., Mollwitz, V., Korn, B.: Green trajectories in high traffic TMAS. In: 26th DASC Digital Avionics Systems Conference—4-Dimensional Trajectory-Based Operaions: Impact on Future Avionics and Systems, pp. 1B21–1B211. Dallas (2007)

  16. Margaria, D., Falletti, E., Acarman, T.: The need for GNSS position integrity and authentication in ITS: conceptual and practical limitations in urban contexts.. In: 2014 IEEE Intelligent Vehicles Symposium, IV 2014, Proceedings, pp. 1384–1389. Dearborn (2014)

  17. Marler, R.T., Arora, J.S.: Survey of multi-objective optimization methods for engineering. Struct. Multidiscip. Optim. 26(6), 369–395 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mujumdar, A., Padhi, R.: Evolving philosophies on autonomous obstacle/collision avoidance of unmanned aerial vehicles. J. Aerosp. Comput. Inf. Commun. 8(2), 17–41 (2011)

    Article  Google Scholar 

  19. Rao, A.V.: Survey of numerical methods for optimal control. Adv. Astronaut. Sci. 135, 497–528 (2010)

    Google Scholar 

  20. Rotondo, G.: Processing and Integrity of DC/DF GBAS for CAT II/III Operations. Institut Nationale Polytechnique de Toulouse (INP Toulouse), Toulouse (2016)

    Google Scholar 

  21. Sabatini, R., Moore, T., Hill, C.: Avionics-based GNSS integrity augmentation synergies with SBAS and GBAS for safety-critical aviation applications. In: 35th DASC Digital Avionics Systems Conference, DASC 2016. Sacramento (2016)

  22. Sabatini, R., Moore, T., Ramasamy, S.: Global navigation satellite systems performance analysis and augmentation strategies in aviation. Prog. Aerosp. Sci. 95, 45–98 (2017)

    Article  Google Scholar 

  23. Toebben, H.H., Mollwitz, V., Bertsch, L., Geister, R.M., et al.: Flight testing of noise abating required navigation performance procedures and steep approaches. Proc. Inst. Mech. Eng. Part H: J. Aerosp. Eng. 228(9), 1586–1597 (2014)

    Google Scholar 

  24. Tsourdos, A., White, B., Shanmugavel, M. (eds.): Cooperative Path Planning of Unmanned Aerial Vehicles. Wiley, Chicester (2011)

    Google Scholar 

  25. Yu, B., Shu, W., Bian, W.: Research on modelling of aviation piston engine for the hardware-in-the-loop simulation. Mater. Sci. Eng. 157, 012004 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Sabatini.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gardi, A., Sabatini, R., Ramasamy, S. et al. Real-Time UAS Guidance for Continuous Curved GNSS Approaches. J Intell Robot Syst 93, 151–162 (2019). https://doi.org/10.1007/s10846-018-0876-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-018-0876-7

Keywords

Navigation