Skip to main content

Advertisement

Log in

Bi-level Flight Path Planning of UAV Formations with Collision Avoidance

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper deals with the problem of generating 3D flight paths for a swarm of cooperating Unmanned Aerial Vechicles (UAVs) flying in a formation having a prespecified shape, in the presence of polygonal obstacles, no-fly zones and other non cooperative aircraft. UAVs are modeled as Dubins flying vehicles with bounds on the turning radius and flight path climb/descent angle. A Reduced Visibility Graph (RVG) based method, connecting selected nodes by means of circular arcs and segments, is adopted to minimize the length of each path. Then, to keep as much as possible the formation shape while flying between obstacles, the RVG is refined with the addition of so called Rendez-Vous Waypoints (RVWs). These are placed between groups of obstacles where it is impossible to maintain the desired formation. Waypoints locations and UAVs paths are optimized using a bi-level game theoretic approach based on the leader-follower Stackelberg model, where the lower level and upper level problems are the search of the shortest paths and the optimal locations of waypoints respectively. Such an approach allows to fly between obstacles, dispersing the formation and forcing UAVs to recompose it at given waypoints (RVWs) beyond groups of obstacles. Collision avoidance among UAVs and possible non-cooperative aircrafts, called intruders, is then achieved solving a set of linear quadratic optimization problems based on an original geometric based formulation. The effectiveness of the proposed approach is shown by means of numerical simulations where RVWs positions are optimized via a genetic algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, M., Robbins, A.: Formation flight as a cooperative game. In: Guidance, navigation, and control conference and exhibit, p. 4124 (1998)

  2. Ariola, M., Mattei, M., D’Amato, E., Notaro, I., Tartaglione, G.: Model predictive control for a swarm of fixed wing Uavs. In: 30Th Congress of the international council of the aeronautical sciences, ICAS 2016 (2016)

  3. Babel, L.: Curvature-constrained traveling salesman tours for aerial surveillance in scenarios with obstacles. Eur. J. Oper. Res. 262(1), 335–346 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bellingham, J., Tillerson, M., Richards, A., How, J.P.: Multi-task allocation and path planning for cooperating Uavs. In: Cooperative control: models, applications and algorithms, pp. 23–41. Springer (2003)

  5. Blake, W., Multhopp, D.: Design, Performance and Modeling Considerations for Close Formation Flight. In: 23Rd atmospheric flight mechanics conference, p. 4343 (1998)

  6. Blasi, L., Barbato, S., D’Amato, E.: A mixed probabilistic-geometric strategy for uav optimum flight path identification based on bit-coded basic manoeuvres. Aerosp. Sci. Technol. 71(Supplement C), 1–11 (2017)

    Article  Google Scholar 

  7. Bortoff, S.A.: Path planning for Uavs. In: American control conference, vol. 1, pp. 364–368 (2000)

  8. Burns, R., McLaughlin, C.A., Leitner, J., Martin, M.: Techsat 21: formation design, control, and simulation. In: Aerospace conference proceedings, 2000 IEEE, vol. 7, pp. 19–25. IEEE (2000)

  9. Camacho-Vallejo, J.F., Cordero-Franco, A.́E., González-ramírez, R.G.: Solving the bilevel facility location problem under preferences by a stackelberg-evolutionary algorithm. Mathematical Problems in Engineering (2014)

  10. Chandler, P., Rasmussen, S., Pachter, M.: Uav cooperative path planning. In: AIAA guidance, navigation, and control conference and exhibit, p. 4370 (2000)

  11. Chen, X., Zhang, J.: The three-dimension path planning of Uav based on improved artificial potential field in dynamic environment. In: 2013 5Th international conference on intelligent human-machine systems and cybernetics (IHMSC), vol. 2, pp. 144–147. IEEE (2013)

  12. Chichka, D.F., Speyer, J.L.: Solar-powered, formation-enhanced aerial vehicle systems for sustained endurance. In: American control conference, 1998. Proceedings of the 1998, vol. 2, pp. 684–688. IEEE (1998)

  13. la Cour-Harbo, A., Bisgaard, M.: State-control trajectory generation for helicopter slung load system using optimal control. In: AIAA guidance, navigation, and control conference, p. 6296 (2009)

  14. D’Amato, E.: Multiobjective evolutionary-based optimization methods for trajectory planning of a quadrotor UAV 3DTech (2012)

  15. D’Amato, E., Daniele, E., Mallozzi, L., Petrone, G.: Equilibrium strategies via ga to stackelberg games under multiple follower’s best reply. Int. J. Intell. Syst. 27(2), 74–85 (2012)

    Article  Google Scholar 

  16. D’Amato, E., Notaro, I., Silvestre, F., Mattei, M.: Bi-level flight path optimization for Uav formations. In: 2017 international conference on unmanned aircraft systems (ICUAS), pp. 690–697 (2017)

  17. Della Vecchia, P., Daniele, E., D’Amato, E.: An airfoil shape optimization technique coupling parsec parameterization and evolutionary algorithm. Aerosp. Sci. Technol. 32(1), 103–110 (2014)

    Article  Google Scholar 

  18. Dever, C., Mettler, B., Feron, E., Popovic, J., McConley, M.: Nonlinear trajectory generation for autonomous vehicles via parameterized maneuver classes. J. Guid. Control. Dyn. 29(2), 289–302 (2006)

    Article  Google Scholar 

  19. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische mathematik 1(1), 269–271 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  20. Duan, H., Li, P.: Bio-inspired computation in unmanned aerial vehicles (2014)

  21. Dubins, L.E.: On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents. Am. J. Math. 79(3), 497–516 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  22. Eun, Y., Bang, H.: Cooperative control of multiple unmanned aerial vehicles using the potential field theory. J. Aircr. 43(6), 1805–1814 (2006)

    Article  Google Scholar 

  23. Frazzoli, E., Dahleh, M.A., Feron, E.: Real-time motion planning for agile autonomous vehicles. In: American control conference, vol. 1, pp. 43–49. IEEE (2001)

  24. Gill, P.E., Wong, E.: Methods for convex and general quadratic programming. Math. Program. Comput. 7, 71–112 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Girard, A.R., De Sousa, J.B., Hedrick, J.K.: An overview of emerging results in networked multi-vehicle systems. In: Proceedings of the 40th IEEE conference on decision and control, 2001, vol. 2, pp. 1485–1490. IEEE (2001)

  26. Hansen, P., Jaumard, B., Savard, G.: New branch-and-bound rules for linear bilevel programming. SIAM J. Sci. Stat. Comput. 13(5), 1194–1217 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  27. Harada, M., Nagata, H., Simond, J., Bollino, K.: Optimal trajectory generation and tracking control of a single coaxial rotor Uav. In: AIAA Guidance, navigation, and control (GNC) conference, p. 4531 (2013)

  28. Jeyaraman, S., Tsourdos, A., Zbikowski, R., White, B.: Kripke modelling of multiple robots with decentralized cooperation specified with temporal logic. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 219(1), 15–31 (2005)

    Article  Google Scholar 

  29. Kitamura, Y., Tanaka, T., Kishino, F., Yachida, M.: 3-D path planning in a dynamic environment using an octree and an artificial potential field. In: Proceedings. 1995 IEEE/RSJ international conference on intelligent robots and systems 95.’human robot interaction and cooperative robots’, vol. 2, pp. 474–481. IEEE (1995)

  30. Kuriki, Y., Namerikawa, T.: Consensus-based cooperative formation control with collision avoidance for a multi-Uav system. In: American control conference (ACC), 2014, pp. 2077–2082. IEEE (2014)

  31. Latombe, J.-C.: Robot motion planning. Kluwer Academic Publishers, Norwell, MA, USA (1991). ISBN: 079239206X

    Book  MATH  Google Scholar 

  32. Lian, F.L., Murray, R.: Real-time trajectory generation for the cooperative path planning of multi-vehicle systems. In: Proceedings of the 41st IEEE conference on decision and control, 2002, vol. 4, pp. 3766–3769. IEEE (2002)

  33. Lin, Y., Saripalli, S.: Path planning using 3D dubins curve for unmanned aerial vehicles. In: 2014 international conference on unmanned aircraft systems (ICUAS), pp. 296–304. IEEE (2014)

  34. Liu, P., Yu, H., Cang, S.: Geometric analysis-based trajectory planning and control for underactuated capsule systems with viscoelastic property. Transactions of the Institute of Measurement and Control p. 0142331217708833 (2017)

  35. Loridan, P., Morgan, J.: A theoretical approximation scheme for stackelberg problems. J. Optim. Theory Appl. 61(1), 95–110 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  36. Maini, P., Sujit, P.B.: Path planning for a Uav with kinematic constraints in the presence of polygonal obstacles. In: 2016 international conference on unmanned aircraft systems (ICUAS), pp. 62–67 (2016)

  37. Mansouri, S.S., Nikolakopoulos, G., Gustafsson, T.: Distributed model predictive control for unmanned aerial vehicles. In: Workshop on research, education and development of unmanned aerial systems (RED-UAS), pp. 152–161. IEEE (2015)

  38. Mattei, M., Blasi, L.: Smooth flight trajectory planning in the presence of no-fly zones and obstacles. J. Guid. Control. Dyn. 33, 454 (2010)

    Article  Google Scholar 

  39. Mattei, M., Scordamaglia, V.: Task priority approach to the coordinated control of a team of flying vehicles in the presence of obstacles. IET Control Theory Appl. 6(13), 2103–2110 (2012)

    Article  MathSciNet  Google Scholar 

  40. McKinsey, J.C.C.: Introduction to the theory of games courier corporation (2012)

  41. Notaro, I.: Guidance navigation & control of a fleet of fixed wing UAVs. Aracne (2016)

  42. Owen, M., Beard, R.W., McLain, T.W.: Implementing dubins airplane paths on fixed-wing Uavs. In: Handbook of unmanned aerial vehicles, pp. 1677–1701. Springer (2015)

  43. Pachter, M., D’Azzo, J.J., Proud, A.W.: Tight formation flight control. J. Guid. Control Dynam. 24(2), 246–254 (2001)

    Article  Google Scholar 

  44. Pehlivanoglu, Y.V.: A new vibrational genetic algorithm enhanced with a voronoi diagram for path planning of autonomous uav. Aerosp. Sci. Technol. 16(1), 47–55 (2012)

    Article  Google Scholar 

  45. Proud, A., Pachter, M., D’Azzo, J.: Close formation flight control. In: Guidance, navigation, and control conference and exhibit, p. 4207 (1999)

  46. Ren, W., Beard, R.W.: Distributed consensus in multi-vehicle cooperative control. Springer, London, UK (2008)

    Book  MATH  Google Scholar 

  47. Richards, A., How, J.: Decentralized model predictive control of cooperating uavs. In: 43rd IEEE conference on Decision and control, IEEE, pp. 4286–4291 (2004)

  48. Sastry, S., Meyer, G., Tomlin, C., Lygeros, J., Godbole, D., Pappas, G.: Hybrid control in air traffic management systems. In: Proceedings of the 34th IEEE conference on Decision and Control, 1995, vol. 2, pp. 1478–1483. IEEE (1995)

  49. Scherer, S., Singh, S., Chamberlain, L., Elgersma, M.: Flying fast and low among obstacles: methodology and experiments. Int. J. Robot. Res. 27, 549–574 (2008)

    Article  Google Scholar 

  50. Schøler, F., Cour-Harbo, A., Bisgaard, M.: Configuration space and visibility graph generation from geometric workspaces for Uavs. In: AIAA guidance, navigation, and control conference. AIAA (2011)

  51. Schøler, F., la Cour-Harbo, A., Bisgaard, M.: Generating approximative minimum length paths in 3D for Uavs. In: Intelligent vehicles symposium (IV), 2012 IEEE, pp. 229–233. IEEE (2012)

  52. Schumacher, C., Singh, S.: Nonlinear control of multiple Uavs in close-coupled formation flight. In: AIAA Guidance, navigation, and control conference and exhibit, p. 4373 (2000)

  53. Shorakaei, H., Vahdani, M., Imani, B., Gholami, A.: Optimal cooperative path planning of unmanned aerial vehicles by a parallel genetic algorithm. Robotica 34(4), 823–836 (2016)

    Article  Google Scholar 

  54. Sinha, A., Malo, P., Deb, K.: Evolutionary algorithm for bilevel optimization using approximations of the lower level optimal solution mapping. Eur. J. Oper. Res. 257(2), 395–411 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  55. Smith, J.M.: Evolution and the Theory of Games. In: Did Darwin Get It Right?, pp. 202–215. Springer (1988)

  56. Tartaglione, G., D’Amato, E., Ariola, M., Rossi, P.S., Johansen, T.A.: Model predictive control for a multi-body slung-load system. Robot. Auton. Syst. 92, 1–11 (2017)

    Article  Google Scholar 

  57. Tsourdos, A., White, B., Shanmugavel, M.: Cooperative path planning of unmanned aerial vehicles, vol. 32. Wiley (2010)

  58. Vicente, L., Savard, G., Júdice, J.: Descent approaches for quadratic bilevel programming. J. Optim. Theory Appl. 81(2), 379–399 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  59. Wu, J., Yi, J., Gao, L., Li, X.: Cooperative path planning of multiple Uavs based on ph curves and harmony search algorithm. In: 2017 IEEE 21St international conference on computer supported cooperative work in design (CSCWD), pp. 540–544. IEEE (2017)

  60. Xu, N., Kang, W., Cai, G., Chen, B.M.: Minimum-time trajectory planning for helicopter Uavs using computational dynamic optimization. In: 2012 IEEE international conference on systems, man, and cybernetics (SMC), pp. 2732–2737. IEEE (2012)

  61. Yan, F., Liu, Y.S., Xiao, J.Z.: Path planning in complex 3d environments using a probabilistic roadmap method. Int. J. Autom. Comput. 10(6), 525–533 (2013)

    Article  Google Scholar 

  62. Yang, Y., Polycarpou, M.M., Minai, A.A.: Multi-uav cooperative search using an opportunistic learning method. J. Dyn. Syst. Meas. Control. 129(5), 716–728 (2007)

    Article  Google Scholar 

  63. Yao, P., Wang, H., Su, Z.: Cooperative path planning with applications to target tracking and obstacle avoidance for multi-uavs. Aerosp. Sci. Technol. 54, 10–22 (2016)

    Article  Google Scholar 

  64. Yin, Y.: Genetic-algorithms-based approach for bilevel programming models. J. Transp. Eng. 126(2), 115–120 (2000)

    Article  Google Scholar 

  65. Yu, H., Meier, K., Argyle, M., Beard, R.W.: Cooperative path planning for target tracking in urban environments using unmanned air and ground vehicles. IEEE/ASME Trans. Mechatron. 20(2), 541–552 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

A short version of this paper was presented in ICUAS 2017 [16].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Egidio D’Amato.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Amato, E., Mattei, M. & Notaro, I. Bi-level Flight Path Planning of UAV Formations with Collision Avoidance. J Intell Robot Syst 93, 193–211 (2019). https://doi.org/10.1007/s10846-018-0861-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-018-0861-1

Keywords

Navigation