Advertisement

Multiple Maps for the Feature-based Monocular SLAM System

  • Huan Hu
  • Hanxu Sun
  • Ping Ye
  • Qingxuan Jia
  • Xin Gao
Article
  • 60 Downloads

Abstract

Monocular visual SLAM has become a popular research area in recent years because of its advantages of requiring low-cost hardware and providing high computational efficiency. This paper presents a multiple maps based SLAM system with four threaded architecture. When multiple maps are introduced the system works consistently in a large area for significant length of time . A new map is created automatically when tracking fails or the size of the map becomes too large. Tracking using multiple small maps reduces the accumulation of errors in visual SLAM to a significant extent when compared with a single map. To enhance the robustness of tracking an algorithm for predicting the camera pose is introduced . Exhaustive evaluations performed on publicly available indoor and outdoor datasets show that our system satisfies real-time requirements for robotics applications while providing superior accuracy to state-of-the-art systems.

Keywords

Monocular SLAM Visual SLAM Robot vision Multiple maps 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We thank the authors of [23] for releasing the KITTI dataset and the authors of [24] for sharing their dataset and experiment results.

References

  1. 1.
    Strasdat, H., Montiel, J.M., Davison, A.J.: Visual SLAM: why filter?. Image Vis. Comput. 30(2), 65–77 (2012)CrossRefGoogle Scholar
  2. 2.
    Klein, G., Murray, D.: Parallel Tracking and Mapping for Small AR Workspaces. In: The 6th IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR 2007), Nara, Japan, pp. 225–234 (2007)Google Scholar
  3. 3.
    Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: ORB-SLAM: a versatile and accurate monocular SLAM system. IEEE Trans. Robot. 31(5), 1147–1163 (2015)CrossRefGoogle Scholar
  4. 4.
    Engel, J., Sch, T., Cremers, D.: LSD-SLAM: large-Scale Direct Monocular SLAM. In: 13th European Conference on Computer Vision (ECCV), Zurich, Switzerland, pp. 834–849 (2014)Google Scholar
  5. 5.
    Buyval, A., Afanasyev, I., Magid, E.: Comparative analysis of ROS-based monocular SLAM methods for indoor navigation. International Conference on Machine Vision (2017)Google Scholar
  6. 6.
    Forster, C., Pizzoli, M., Scaramuzza, D.: SVO: fast semi-direct monocular visual odometry. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 15–22 (2014)Google Scholar
  7. 7.
    Younes, G., Asmar, D., Shammas, E.: A survey on non-filter-based monocular Visual SLAM systems (2016)Google Scholar
  8. 8.
    Cummins, M., Newman, P.: Appearance-only SLAM at large scale with FAB-MAP 2.0. Int. J. Robot. Res. 30(9), 1100–1123 (2011)CrossRefGoogle Scholar
  9. 9.
    Glover, A., et al.: OpenFABMAP: an Open Source Toolbox for Appearance-Based Loop Closure Detection. In: IEEE International Conference on Robotics and Automation (ICRA), Saint Paul, USA, pp. 4730–4735 (2012)Google Scholar
  10. 10.
    Milford, M., Wyeth, G.: SeqSLAM: visual route-based navigation for sunny summer days and stormy winter nights. In: IEEE International Conference on Robotics and Automation, pp. 1643–1649 (2012)Google Scholar
  11. 11.
    Kummerle, R., Grisetti, G., Strasdat, H., Konolige, K., Burgard, W.: G2o: a general framework for graph optimization. In: IEEE International Conference on Robotics and Automation, pp. 3607–3613 (2011)Google Scholar
  12. 12.
    Dubbelman, G., Browning, B.: COP-SLAM: closed-Form online Pose-Chain optimization for visual SLAM. IEEE Trans. Robot. 31(5), 1194–1213 (2015)CrossRefGoogle Scholar
  13. 13.
    McDonald, J., et al.: Real-time 6-DOF multi-session visual SLAM over large-scale environments. Robot. Auton. Syst. 61(10), 1144–1158 (2013)CrossRefGoogle Scholar
  14. 14.
    Holmes, S.A., Murray, D.W.: Monocular SLAM with conditionally independent split mapping. IEEE Trans. Pattern Anal. Mach. Intell. 35(6), 1451–63 (2013)CrossRefGoogle Scholar
  15. 15.
    Bourmaud, G., Megret, R.: Robust large scale monocular visual SLAM. Computer Vision and Pattern Recognition, 1638–1647 (2015)Google Scholar
  16. 16.
    Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to SIFT or SURF. In: IEEE International Conference on Computer Vision, pp. 2564–2571 (2011)Google Scholar
  17. 17.
    Galvez-Lopez, D., Tardos, J.D.: Bags of binary words for fast place recognition in image sequences. IEEE Trans. Robot. 28(5), 1188–1197 (2012)CrossRefGoogle Scholar
  18. 18.
    Blanco, J.L.: A tutorial on se3 transformation parameterizations and on-manifold optimization. In: University of Malaga, Spain (2010)Google Scholar
  19. 19.
    Benhimane, S., Malis, E.: Real-time image-based tracking of planes using efficient second-order minimization. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 943–948 (2004)Google Scholar
  20. 20.
    Lepetit, V., Moreno-Noguer, F., Fua, P.: EPNp: an accurate O(n) solution to the PnP problem. Int. J. Comput. Vis. 81(2), 155–166 (2009)CrossRefGoogle Scholar
  21. 21.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  22. 22.
    Horn, B.K.P.: Closed-form solution of absolute orientation using unit quaternions. J. Opt. Soc. Am. A 4(4), 629–642 (1987)CrossRefGoogle Scholar
  23. 23.
    Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI dataset. Int. J. Robot. Res. 32(11), 1231–1237 (2013)CrossRefGoogle Scholar
  24. 24.
    Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark for the evaluation of RGB-D SLAM systems. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 573–580 (2012)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Huan Hu
    • 1
  • Hanxu Sun
    • 1
  • Ping Ye
    • 1
  • Qingxuan Jia
    • 1
  • Xin Gao
    • 1
  1. 1.Automation SchoolBeijing University of Posts and TelecommunicationsBeijingChina

Personalised recommendations