Advertisement

Low Impact Force and Energy Consumption Motion Planning for Hexapod Robot with Passive Compliant Ankles

  • Haibo Gao
  • Yufei Liu
  • Liang Ding
  • Guangjun Liu
  • Zongquan Deng
  • Yiqun Liu
  • Haitao Yu
Article
  • 52 Downloads

Abstract

Motion planning plays an important role in the performance optimization of legged robots. This paper presents a method to minimize the impact force and energy consumption effectively by providing an integrated strategy of motion planning subject to velocity and acceleration constraints. The parameters defined for the motion planning are computed to generate the foot trajectory. A foot–terrain interaction model and an energy-consumption model are formulated to evaluate the contact force and power consumption for statically stable gaits. The proposed method has been implemented on a hexapod robot. The acceleration of foot landing is reduced, and constant velocity control of the trunk body with passive compliant ankles is achieved for reducing the impact force and energy consumption. Extensive experiments have been carried out, and the experimental results have demonstrated the effectiveness of the proposed method in comparison with a conventional method.

Keywords

Motion planning Impact force Energy consumption Hexapod Passive compliant ankles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This study was supported in part by the National Natural Science Foundation of China (Grant No. 51575120/61370033), National Basic Research Program of China (Grant No. 2013CB035502), Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No. 51521003), Foundation of Chinese State Key Laboratory of Robotics and Systems (Grant No. SKLRS201501B, SKLRS20164B), Harbin Talent Program for Distinguished Young Scholars (No. 2014RFYXJ001), and the “111 Project” (Grant No. B07018).

References

  1. 1.
    Reina, G., Foglia, M.: On the mobility of all-terrain rovers. Ind. Robot. 40(2), 121–131 (2013)CrossRefGoogle Scholar
  2. 2.
    Nagatani, K., Noyori, T., Yoshida, K.: Development of multi-D.O.F. tracked vehicle to traverse weak slope and climb up rough slope. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, pp. 2849–2854 (2013)Google Scholar
  3. 3.
    Wooden, D., Malchano, M., Blankespoor, K., Howardy, A., Rizzi, A.A., Raibert, M.: Autonomous navigation for BigDog. In: Proceedings of the IEEE International Conference on Robotics and Automation, Anchorage, pp. 4736–4741 (2010)Google Scholar
  4. 4.
    Chen, S.C., Huang, K.J., Chen, W.H., Shen, S.Y., Li, C.H, Lin, P.C.: Quattroped: a leg–wheel transformable robot. IEEE/ASME Trans. Mechatron. 19(2), 730–742 (2014)CrossRefGoogle Scholar
  5. 5.
    Zhuang, H.C., Gao, H.B., Deng, Z.Q., Ding, L.: A review of heavy-duty legged robots. Sci. China Technol. Sci. 57(2), 298–314 (2014)CrossRefGoogle Scholar
  6. 6.
    Lee, W.: The kinematics of motion planning for multilegged vehicles over uneven terrain. IEEE J. Robot. Autom. 4(2), 204–212 (1988)CrossRefGoogle Scholar
  7. 7.
    Irawan, A., Nonami, K.: Optimal impedance control based on body inertia for a hydraulically driven hexapod robot walking on uneven and extremely soft terrain. J. Field Rob. 28(5), 690–713 (2011)CrossRefzbMATHGoogle Scholar
  8. 8.
    Irawan, A., Nonami H Ohroku, K., Akutsu, Y., Imamura, S.: Adaptive impedance control with compliant body balance for hydraulically driven hexapod robot. J. Syst. Des. Dyn. 5(5), 893–908 (2011)Google Scholar
  9. 9.
    Raibert, M., Blankespoor, K., Nelson, G., Playter, R.: BigDog, the rough-terrain quadruped robot. In: Proceedings of 17th World Congress on the International Federation of Automatic Control, Seoul. 10822–10825 (2008)Google Scholar
  10. 10.
    Kalakrishnan, M., Buchli, J.: Learning, planning, and control for quadruped locomotion over challenging terrain. Int. J. Robot. Res. 30(2), 236–258 (2011)CrossRefGoogle Scholar
  11. 11.
    Townsend, J., Biesiadecki, J., Collins, C.: ATHLETE mobility performance with active terrain compliance. In: Proceedings of the IEEE Aerospace Conference, Big Sky, pp. 1–7 (2010)Google Scholar
  12. 12.
    Chavez-Clemente, D.: Gait optimization for multi-legged walking robots, with application to a lunar hexapod, pp. 1–150. Department of Aeronautics and Astronautics, Stanford University (2011)Google Scholar
  13. 13.
    Saranli, U., Koditschek, M., Buehler, D.E.: RHex: a simple and highly mobile hexapod robot. Int. J. Robot. Res. 20(7), 616–631 (2001)CrossRefGoogle Scholar
  14. 14.
    Chettibi, T., Haddada, M., Labedb, A., Hanchi, S.: Generating optimal dynamic motions for closed-chain robotic systems. Eur. J. Mech. Solids 24, 504–518 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Manjanna, S., Dudek, G.: Autonomous gait selection for energy efficient walking. In: 2015 IEEE International Conference on Robotics and Automation, pp. 5155–5162 (2015)Google Scholar
  16. 16.
    Shabestari, S.S., Emami, M.R.: Gait planning for a hopping robot. Robotica 34(8), 1822–1840 (2016)CrossRefGoogle Scholar
  17. 17.
    Potts, A.S.: Optimal power loss motion planning in legged robots. Robotica 34(2), 423–448 (2015)CrossRefGoogle Scholar
  18. 18.
    Roy, S.S., Pratihar, D.K.: Kinematics, dynamics and power consumption analyses for turning motion of a six-legged robot. J. Intell. Robot. Syst. 74(3), 663–688 (2014)CrossRefGoogle Scholar
  19. 19.
    Kottege, N., Parkinson, C.: Energetics-informed hexapod gait transitions across terrains. In: 2015 IEEE International Conference on Robotics and Automation, pp. 5140–5147 (2015)Google Scholar
  20. 20.
    Jin, B., Chen, C., Li, W.: Power consumption optimization for a hexapod walking robot. J. Intell. Robot. Syst. 71(2), 195–209 (2013)CrossRefGoogle Scholar
  21. 21.
    Deng, Z.Q., Liu, Y.Q., Ding, L., Gao, H.B., Yu, H.T., Liu, Z: Motion planning and simulation verification of a hydraulic hexapod robot based on reducing energy/flow consumption. J. Mech. Sci. Technol. 29(10), 4427–4436 (2015)CrossRefGoogle Scholar
  22. 22.
    Usherwood, J.R., Bertram, J.E.A.: Understanding brachiation, insight from a collisional perspective. J. Exp. Biol. 206(10), 1631–1642 (2003)CrossRefGoogle Scholar
  23. 23.
    Ruina, A., Bertram, J.E., Srinivasan, M.: A collisional model of the energetic cost of support work qualitatively explains leg sequencing in walking and galloping pseudo-elastic leg behavior in running and the walk-to-run transition. J. Theor. Biol. 237(2), 170–192 (2005)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Wilson, D.M.: Insect walking. Annu. Rev. Entomol. 11(1), 103–122 (1996)CrossRefGoogle Scholar
  25. 25.
    Nishii, J.: Legged insects select the optimal locomotor pattern based on the energetic cost. Biol. Cybern. 83(5), 435–442 (2000)CrossRefGoogle Scholar
  26. 26.
    Siciliano, B., Khatib, O.: Springer Handbook of Robotics. Springer, Berlin (2016)CrossRefzbMATHGoogle Scholar
  27. 27.
    Gonzalez de Santos, P., Garcia, E., Ponticelli, R., Armada, M.: Minimizing energy consumption in hexapod robots. Adv. Robot. 23, 681–704 (2009)CrossRefGoogle Scholar
  28. 28.
    Nishii, J.: An analytical estimation of the energy cost for legged locomotion. J. Theor. Biol. 238(3), 636–645 (2006)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Dupont, P.E.: Friction modeling in dynamic robot simulation. In: Proceedings. 1990 IEEE International Conference on Robotics and Automation, pp. 1370–1376 (1990)Google Scholar
  30. 30.
    Gogoussis, A., Donath, M.: Coulomb friction joint and drive effects in robot mechanisms. In: Proceedings. 1987 IEEE International Conference on Robotics and Automation, vol. 4, pp. 828–836 (1987)Google Scholar
  31. 31.
    Zhuang, H.C., Gao, H.B., Ding, L., Liu, Z., Deng, Z.Q.: Method for analyzing articulated torques of heavy-duty six-legged robot. Chin. J. Mech. Eng. 26(4), 801–812 (2013)CrossRefGoogle Scholar
  32. 32.
    Ding, L., Gao, H.B., Deng, Z.Q., Song, J.H., Liu, Y.Q., Liu, G.J., Iagnemma, K.: Foot-terrain interaction mechanics for legged robots: modeling and experimental validation. Int. J. Robot. Res. 32(13), 1585–1606 (2013)CrossRefGoogle Scholar
  33. 33.
    Hunt, K.H., Crossley, F.R.E.: Coefficient of restitution interpreted as damping in vibroimpact. J. Appl. Mech. 42(2), 440–445 (1975)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Haibo Gao
    • 1
  • Yufei Liu
    • 1
  • Liang Ding
    • 1
  • Guangjun Liu
    • 2
  • Zongquan Deng
    • 1
  • Yiqun Liu
    • 3
  • Haitao Yu
    • 1
  1. 1.State Key Laboratory of Robotics and SystemHarbin Institute of TechnologyHarbinChina
  2. 2.Department of Aerospace EngineeringRyerson UniversityTorontoCanada
  3. 3.School of Automotive EngineeringHarbin Institute of TechnologyWeihaiChina

Personalised recommendations